CN_Week1_Receptive_Field
0. The introduction:
1. An example: Models of "Receptive Fields".
2. An intuitive method of showing the electrical activities of neurons -- converting them to audio signals.
1. Descriptive Model of Receptive Field
Maybe it's a center-surrond RF:
or
,
But, the experiment showed that the signals got strongest when the beam was moving like:

So, here comes the "oriented receptive fields":

2. Mechanistic Model of RF:
Whereas the lateral geniculate nucleus (LGN) has the basically center-surrond RFs, just like those in retina. So, how does it come out like:
-> 
Ahh, here it is:
( -- It's the Mechanistic Model, designed to describe how the neuron system does what we have observed it to do)
So, it just looks like that the two base vectors ((0, 1), (1, 0)) can make up all coords in a two-dimensional axis.
附脑图:
3. Interpretive Model of RF:
Efficient Coding Hypothesis: suppose that the goal is to represent images as faithfully and effectively as possible using neurons with \(RF_1\), \(RF_2\), ...
Given image I, we can reconstruct I using neural reponses \(r_1\), \(r_2\),
, like:

Idea: What are the $RF_i that minimize the total squared pixelwise errors between I and I_hat and are as independent as possible.
Solution: Start out with random \(RF_i\) and run your efficient coding algorithm on natural image patches.
Optimization methods: Sparse coding, ICA(Independent Component Analysis), Predictive coding..."Remember the 'features' in CNN?":
, they are 'oriented poles', very similar to '
'.
4. Neurons, Synapses, and Brain Region
1. Brain Cell and Neurons:
First of all, take a look at "The Brain Cell":
while mostly, we see the neurons ideally as this one:
2. Synapses:
The reason why synapses can control the ions in or out is that it has a good "gatekeeper".
Ionic Channel: The Gatekeeper:
Characteristics: Selective and allowing only specific ions to pass through(e.g. Pass Na+ but not K+ or Cl-).3 factors of "being gated":
- Voltage-gated;
- Chemically-gated(Synapses);
- Mechanically-gated.
3. Myelination of Axon:
Enable fast long-range spike communication like active wiring(e.g. Reacting to the pain of feet needs to transport potential at once through a long distance, and the Myelination is used.)
4. Definition: A synapse is a "connection" or junction between two neurons:
- Electrical synapses use gap junctions:
+ Chemical synapses use neuron transmitters:
5. The Synapse Doctrine:
Synapses are the basis for memory abd learning.
6. Hebbian Plasticity:
If neuron A repeatedly takes part in firing neuron B, then the synapse from A to B is strengthened:
7. Synaptic Plasticity depends on Spike Timing!
CN_Week1_Receptive_Field的更多相关文章
随机推荐
- Varnsih调用多台后端主机
author:JevonWei 版权声明:原创作品 Varnsih调用多个后端主机 环境 Varnish 192.168.198.139 图片服务端 192.168.198.120 程序服务端 192 ...
- LVS-DR实现web调度模式
author:JevonWei 版权声明:原创作品 实现LVS-DR调度web模式 拓扑环境 网络环境 RS1 RIP 192.168.198.138/24 VIP 192.168.198.100/3 ...
- Linux-ps命令(7)
名称:ps(process status) 使用权限:所有使用者说明:显示瞬间进程 (process) 的动态 示例: 比如输入ps查看进程,如下图: 其中输出状态栏参数: PID 该 process ...
- poj 2723 二分+2-sat判定
题意:给出n对钥匙,每对钥匙只能选其中一个,在给出每层门需要的两个钥匙,只要一个钥匙就能开门,问最多能到哪层. 思路:了解了2-SAT判定的问题之后主要就是建图的问题了,这里建图就是对于2*n个钥匙, ...
- PHP初入--表单元素
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- 转: 【Java并发编程】之十八:第五篇中volatile意外问题的正确分析解答(含代码)
转载请注明出处:http://blog.csdn.net/ns_code/article/details/17382679 在<Java并发编程学习笔记之五:volatile变量修饰符-意料之外 ...
- 关于SVM数学细节逻辑的个人理解(一)
网上,书上有很多的关于SVM的资料,但是我觉得一些细节的地方并没有讲的太清楚,下面是我对SVM的整个数学原理的推导过程,其中我理解的地方力求每一步都是有理有据,希望和大家讨论分享. 首先说明,目前我的 ...
- Node.js之eventproxy详解
安装 npm install eventproxy --save 调用 var EventProxy = require('eventproxy'); 异步协作 多类型异步协作 此处以页面渲染为场景, ...
- 团队作业4——第一次项目冲刺 SiStH DaY
项目冲刺--??? 你以为penta kill以后就没事了嘛,就没得写了吗?你还期待我会给你一个六杀?七杀?别逗了,你以为你玩三国杀呢,做项目这么严肃的事情,怎么能玩笑. 那么我就在这里明明白白地告诉 ...
- 201521123067 《Java程序设计》第7周学习总结
201521123067 <Java程序设计>第7周学习总结 1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 Q1.ArrayList代码分析 ...