panda库2
>>> a=pd.Series([1,2],index=['a','b'])
>>> a
a 1
b 2
dtype: int64
>>> b=pd.Series(['b','a'])
>>> b
0 b
1 a
dtype: object
>>> b.index
RangeIndex(start=0, stop=2, step=1)
>>> b.values
array(['b', 'a'], dtype=object)
>>> a/2
a 0.5
b 1.0
dtype: float64
>>> dic={'zhang':1,'li':2}
>>> d=pd.Series(dic) 参数的形式是字典,numpy中参数是列表
>>> d
li 2
zhang 1
dtype: int64
>>> frame=pd.DataFrame('name':['zhang','li'],'age':[12,13],'addr':['beijing','shanghai'])
SyntaxError: invalid syntax
>>> dic={'name':['zhang','li'],'age':[12,13],'addr':['beijing','shanghai']}
>>> frame=pd.DataFrame(dic) 参数是字典
>>> frame
addr age name
0 beijing 12 zhang
1 shanghai 13 li
>>> frame.columns index,columns两个关键字属性
Index(['addr', 'age', 'name'], dtype='object')
>>> frame.index
RangeIndex(start=0, stop=2, step=1)
>>> frame2=pd.DataFrame(np.arange(16).reshape((4,4)),colums=['name','age','addr'],index=['a','b','c'])
>>> frame2
like name age addr
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame.name 指定列名字
0 zhang
1 li
Name: name, dtype: object
>>> frame2.ix[2] 查看某行 ix【】
like 8
name 9
age 10
addr 11
Name: c, dtype: int32
>>> frame2.ix[2,3]
11
>>> frame2.index.name='id';frame2.columns.name='item' 对标头的name属性指定
>>> frame2
item like name age addr
id
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame2['new']=12 添加新列
>>> frame2
item like name age addr new
id
a 0 1 2 3 12
b 4 5 6 7 12
c 8 9 10 11 12
d 12 13 14 15 12
>>> frame2['new']
id
a 12
b 12
c 12
d 12
Name: new, dtype: int64
>>> frame2['new']['b'] 根据列行找到元素
12
>>> frame2.isin([2])
item like name age addr new
id
a False False True False False
b False False False False False
c False False False False False
d False False False False False
>>> del frame['new']
>>> del frame2['new'] 删除列
>>> frame2
item like name age addr
id
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame2[frame2<8] 找到小于8的所有元素
item like name age addr
id
a 0.0 1.0 2.0 3.0
b 4.0 5.0 6.0 7.0
c NaN NaN NaN NaN
d NaN NaN NaN NaN
>>> frame.T 对表进行转置
0 1
addr beijing shanghai
age 12 13
name zhang li
>>> frame2.T
id a b c d
item
like 0 4 8 12
name 1 5 9 13
age 2 6 10 14
addr 3 7 11 15
>>> frame2.idxmin() 找到索引的最小值 idxmin()
item
like a
name a
age a
addr a
dtype: object
>>> frame2.idxmax()
item
like d
name d
age d
addr d
dtype: object
>>> frame2.index.is_unique
True
>>> frame2.reindex(['one','two','three','four'])
item like name age addr
id
one NaN NaN NaN NaN
two NaN NaN NaN NaN
three NaN NaN NaN NaN
four NaN NaN NaN NaN
>>> frame2
item like name age addr
id
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame2.drop('a') 删除行根据索引
item like name age addr
id
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame2.drop(['name'],axis=1) 删除列
item like age addr
id
a 0 2 3
b 4 6 7
c 8 10 11
d 12 14 15
>>> frame2
item like name age addr 每行-series
id
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> ser=[1,2,3,4]
>>> frame2-ser
item like name age addr
id
a -1 -1 -1 -1
b 3 3 3 3
c 7 7 7 7
d 11 11 11 11
>>> np.sqrt(frame2) 求所有的sqrt
item like name age addr
id
a 0.000000 1.000000 1.414214 1.732051
b 2.000000 2.236068 2.449490 2.645751
c 2.828427 3.000000 3.162278 3.316625
d 3.464102 3.605551 3.741657 3.872983
>>> f=lambda x:x.max()-x.min() 对frame f(x)默认是对一列的所有值中寻找
>>> frame2.apply(f)
item
like 12
name 12
age 12
addr 12
dtype: int64
>>> def f(x):
return pd.Series([x.min(),x.max()],index=['min','max']) >>> frame.apply(f)
addr age name
min beijing 12 li
max shanghai 13 zhang
>>> frame2.sum()
item
like 24
name 28
age 32
addr 36
dtype: int64
>>> frame.mean()
age 12.5
dtype: float64
>>> frame2.mean()
item
like 6.0
name 7.0
age 8.0
addr 9.0
dtype: float64
>>> frame2.describe()
item like name age addr
count 4.000000 4.000000 4.000000 4.000000
mean 6.000000 7.000000 8.000000 9.000000
std 5.163978 5.163978 5.163978 5.163978
min 0.000000 1.000000 2.000000 3.000000
25% 3.000000 4.000000 5.000000 6.000000
50% 6.000000 7.000000 8.000000 9.000000
75% 9.000000 10.000000 11.000000 12.000000
max 12.000000 13.000000 14.000000 15.000000
>>> frame.describe()
age
count 2.000000
mean 12.500000
std 0.707107
min 12.000000
25% 12.250000
50% 12.500000
75% 12.750000
max 13.000000
>>> frame2.sort_index()
item like name age addr
id
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame.sort_index() 以索引进行排序
addr age name
0 beijing 12 zhang
1 shanghai 13 li
>>> frame
addr age name
0 beijing 12 zhang
1 shanghai 13 li
>>> ser.sort_index()
Traceback (most recent call last):
File "<pyshell#95>", line 1, in <module>
ser.sort_index()
AttributeError: 'list' object has no attribute 'sort_index'
>>> ser
[1, 2, 3, 4, 5]
panda库2的更多相关文章
- python数据分析panda库
panda内有两种数据结构,Series()和DataFrame() >>> a=pd.Series([1,2],index=['a','b']) >>> a a ...
- panda库------对数据进行操作---合并,转换,拼接
>>> frame2 addr age name 0 beijing 12 zhang 1 shanghai 24 li 2 hangzhou 24 cao >>> ...
- python panda库自动去重
http://blog.csdn.net/xinxing__8185/article/details/48022401
- Python数据分析numpy库
1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...
- 3 个用于数据科学的顶级 Python 库
使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机 ...
- 程序员用于机器学习数据科学的3个顶级 Python 库
NumPy NumPy(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具.NumPy 是在 BSD 许可 ...
- Python爬虫作业
题目如下: 请分析作业页面(https://edu.cnblogs.com/campus/hbu/Python2018Fall/homework/2420), 爬取已提交作业信息,并生成已提 ...
- Python数据分析之双色球高频数据统计
Step1:基础数据准备(通过爬虫获取到),以下是从第一期03年双色球开奖号到今天的所有数据整理,截止目前一共2549期,balls.txt 文件内容如下 : 备注:想要现成数据的可以给我发邮件哟~ ...
- sql mysql数据库导库 panda pymysql
mysql数据库 导入数据 1. panda 效率超高 对内存要求高 网络稳定性 # 读取文件 ratings_names = ['user_id', 'movie_id', 'ratings', ' ...
随机推荐
- Github 开源:使用 .NET WinForm 开发所见即所得的 IDE 开发环境(Sheng.Winform.IDE)【2.源代码简要说明】
GitHub:https://github.com/iccb1013/Sheng.Winform.IDE 在上一篇文章中,简要的介绍了 Sheng.Winform.IDE 的基本功能和要实现的目标: ...
- 【javascript】您好, 您要的ECMAScript6速记套餐到了
[前言]本文“严重参考” 自阮一峰老师写的文档,在此我郑重感谢他沉默无声的帮助 总结一下ES6为 javascript中的 对象/数组/函数 这JS三巨头所提供的更简洁优雅的书写方式,以及扩展的API ...
- Django 学习笔记(三)模板导入
本章内容是将一个html网页放进模板中,并运行服务器将其展现出来. 平台:windows平台下Liunx子系统 目前的目录: hello ├── manage.py ├── hello │ ├── _ ...
- 【转载】webstorm11(注册,激活,破解,码,一起支持正版,最新可用)(2016.11.16更新)
很多人都发现 http://idea.lanyus.com/ 不能激活了 很多帖子说的 http://15.idea.lanyus.com/ 之类都用不了了 最近封的厉害仅作测试 选择 License ...
- System.ComponentModel.DataAnnotations 冲突
项目从原来的.NET Framework4.0 升级到 .NET Framework4.5 编译报错. 查找原因是: Entity Framework 与 .net4.5 的 System.Compo ...
- 哪有Python视频百度云链接?
说到Python视频哪个好,小编在这里不好下结论.毕竟孰好孰坏,只有合适的才是最好的.就像买鞋子,一双鞋子好不好,只有合脚才是真的好.不过,这里有些个人认为通俗易懂的Python视频可以分享给大家. ...
- python常用标准库
-------------------系统内建函数------------------- 1.字符串 str='这是一个字符串数据测试数据'对应 str[0]:获取str字符串中下标为 ...
- ScrollView嵌套ListView只显示一行
错误描述 ScrollView嵌套ListView中导致ListView高度计算不正确,只显示一行. 解决方法 重写ListView的onMeasure方法,代码如下. @Override publi ...
- 利用 FormData 对象和 Spring MVC 配合可以实现Ajax文件上载功能
Ajax文件上载 利用 FormData 对象和 Spring MVC 配合可以实现Ajax文件上载功能: 步骤 导入组件并准备静态脚本 <dependency> <groupId& ...
- 最近见到的JS返回函数的一些题
JS返回值题一直都是考察重点,面试和笔试之中也经常涉及到,说一说我最近遇到的一些有意思的JS返回函数问题. 之前见到过一道有意思的问题,说有一个sum函数,用户可以通过sum(2,3)来取到2+3 = ...