hadoop2.4.1伪分布式环境搭建
注意:所有的安装用普通哟用户安装,所以首先使普通用户可以以sudo执行一些命令:
0.虚拟机中前期的网络配置参考:
http://www.cnblogs.com/qlqwjy/p/7783253.html
1.赋予hadoop用户以sudo执行一些命令
visodo
或者
vim /etc/sudoers
添加下面第二行内容:

登录hadoop用户查看命令:
[hadoop@localhost java]$ sudo -l #查看当前用户可以以sudo命令执行哪些命令
Matching Defaults entries for hadoop on this host:
requiretty, !visiblepw, always_set_home, env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE INPUTRC KDEDIR
LS_COLORS", env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE", env_keep+="LC_COLLATE
LC_IDENTIFICATION LC_MEASUREMENT LC_MESSAGES", env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY", secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin User hadoop may run the following commands on this host:
(ALL) ALL
------------------------安装hadoop运行环境,切换到hadoop用户----------------------
我所有的文件上传采用的sftp,建议安装git工具自带ssh和sftp等。注意自己的linux位数,我刚开始安装的64位JDK,结果linux是32位,JDK不能用
查看位数:
uname -a
或者
getconf LONG_BIT
1.安装JDK
(1)上传到服务器之后解压
sudo tar -zxvf ./jdk-7u65-linux-i586.tar.gz
(2)查看当前安装目录:
[hadoop@localhost jdk1..0_65]$ pwd
/opt/java/jdk1..0_65
(3)配置环境变量 ;
[hadoop@localhost jdk1..0_65]$ tail - ~/.bashrc
export JAVA_HOME=/opt/java/jdk1..0_65
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:${PATH}
重新加载环境变量:
[hadoop@localhost jdk1..0_65]$ source ~/.bashrc
(4)执行java或者javac测试:
[hadoop@localhost jdk1..0_65]$ java -vsersion
Unrecognized option: -vsersion
Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.
[hadoop@localhost jdk1..0_65]$ javac -version
javac 1.7.0_65
2. 安装hadoop2.4.1
(1)将文件上传到服务器
sftp> put hadoop-2.4..tar.gz
(2)解压
sudo tar -zxvf ./hadoop-2.4..tar.gz
(3)解压后查看目录:
[hadoop@localhost hadoop-2.4.]$ ls
bin etc include lib libexec LICENSE.txt NOTICE.txt README.txt sbin share
其中java相关的jar包存放在share目录,下面还有个docs目录,没啥用,删掉就行了。
bin是可执行文件
etc是hadoop是相关配置文件
lib,libexec是相关的本地服务
sbin是hadoop的管理执行文件
(4)修改配置文件:hadoop2.x的配置文件$HADOOP_HOME/etc/hadoop
- 修改:hadoop-env.sh(设置JDK环境变量)
#第27行
export JAVA_HOME=/opt/java/jdk1..0_65
- 修改:core-site.xml
<!-- 指定HADOOP所使用的文件系统schema(URI),HDFS的老大(NameNode)的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop/hadoop-2.4.1/data/</value>
</property>
- 修改hdfs-site.xml hdfs-default.xml
<!-- 指定HDFS副本的数量 -->
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
- 修改 mapred-site.xml (mapreduce)
首先将mapred-site.xml.template改名字为mapred-site.xml。否则hadoop不会读取
[hadoop@localhost hadoop]$ sudo mv ./mapred-site.xml.template ./mapred-site.xml
修改:
<!-- 指定mapreduce运行在yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
- 修改 yarn-site.xml (修改yarn)
<!-- 指定YARN的老大(ResourceManager)的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>localhost</value>
</property>
<!-- reducer获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
(5)关闭linux的防火墙:
[root@localhost ~]# service iptables stop #关闭防火墙
iptables: Flushing firewall rules: [ OK ]
iptables: Setting chains to policy ACCEPT: filter [ OK ]
iptables: Unloading modules: [ OK ]
[root@localhost ~]# ls
anaconda-ks.cfg install.log install.log.syslog
[root@localhost ~]# service iptables status #查看iptables状态
iptables: Firewall is not running.
3.启动hadoop与测试hadoop
(1)前期准备
- 首先将hadoop添加到环境变量,便于在任意目录使用hadoop的命令:
export JAVA_HOME=/opt/java/jdk1..0_65
export HADOOP_HOME=/opt/hadoop/hadoop-2.4.1
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:${PATH}:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
- 格式化namenode(是对namenode进行初始化)
hdfs namenode -format (hadoop namenode -format)
执行命令之后会在我们的配置的hadoop的临时目录下面创建 dfs/name/current/ 目录并且写入四个文件:
[root@localhost data]# ll ./dfs/name/current/
total
-rw-r--r--. root root Apr : fsimage_0000000000000000000
-rw-r--r--. root root Apr : fsimage_0000000000000000000.md5
-rw-r--r--. root root Apr : seen_txid
-rw-r--r--. root root Apr : VERSION
(2)启动hadoop(最好设置ssh秘钥登录,否则会输入多次密码,可以自己写个shell脚本调用hdfs和yarn两个ssh脚本)
- 启动HDFS
先启动HDFS,到hadoop安装目录下: /opt/hadoop/hadoop-2.4.1/sbin
sbin/start-dfs.sh
验证是否启动成功
[root@localhost sbin]# jps
SecondaryNameNode
Jps
DataNode
NameNode
解释: 上面启动hadoop的时候会读取启动localhost的Namenode,因为hadoop的安装目录下的etc下有个slaves文件,指定从哪些机器启动Namenode
如果搭建多个节点需要在下面的配置文件增加节点,正规的分布式集群
[root@localhost hadoop]# cat ./slaves
localhost
- 启动yarn
[root@localhost sbin]# ./start-yarn.sh
再次查看:
[root@localhost sbin]# jps
NodeManager
ResourceManager
SecondaryNameNode
DataNode
Jps
NameNode
(3)测试上面启动的hdfs和yarn
http://192.168.2.136:50070 (HDFS管理界面)
http://192.168.2.136:8088 (MR管理界面)
- 测试hdfs

我们也可以通过网页浏览hafs文件:

首先我们上传一个文件:
[root@localhost ~]# ll
total
-rw-------. root root Sep anaconda-ks.cfg
-rw-r--r--. root root Sep install.log
-rw-r--r--. root root Sep install.log.syslog
[root@localhost ~]# hadoop fs -put install.log hdfs://localhost:9000/ #将当前目录下的install.log上传到hsfs的根目录下
接下来我们再次查看数据会发现:

点开也可以下载文件:
我们在本地删掉install.log然后从hdfs中下载文件:
[root@localhost ~]# rm -rf ./install.log #删除文件
[root@localhost ~]# ls
anaconda-ks.cfg install.log.syslog [root@localhost ~]# hadoop fs -get hdfs://localhost:9000/install.log #hadoop下载文件
[root@localhost ~]# ls
anaconda-ks.cfg install.log install.log.syslo
- 测试mapreduce
由于我们没有编写mapreduce程序,所以我们需要利用hadoop自带的一些程序进行测试,下面测试一个求PI的值和一个统计单词出现次数的mapreduce程序
进入到hadoop的mapreduce目录下:
[root@localhost mapreduce]# pwd
/opt/hadoop/hadoop-2.4./share/hadoop/mapreduce
例一:计算求pi值的mapreduce程序
[root@localhost mapreduce]# hadoop jar hadoop-mapreduce-examples-2.4.1.jar pi 5 5 #执行求pi值的mapreduce,开启5个map,每个map取样5个
Number of Maps = 5
Samples per Map = 5
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Starting Job
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523441540916_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1523441540916_0001
// :: INFO mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1523441540916_0001/
// :: INFO mapreduce.Job: Running job: job_1523441540916_0001
// :: INFO mapreduce.Job: Job job_1523441540916_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1523441540916_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-seconds taken by all map tasks=
Total vcore-seconds taken by all reduce tasks=
Total megabyte-seconds taken by all map tasks=
Total megabyte-seconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
Job Finished in 188.318 seconds
Estimated value of Pi is 3.68000000000000000000 #计算结果
例二:一个wordcount的mapreduce(给一篇英文文章,会统计每个单词出现的次数)
(1)编辑一个英文文件
[root@localhost mapreduce]# cat ./test.txt
hello lll
hello kkk
hello meinv
hello
(2)为了计算我们需要将文件上传到hdfs中
先在hdfs中建一个目录:(两种创建目录的方式)
[root@localhost mapreduce]# hadoop fs -mkdir hdfs://localhost:9000/wordcount #第一种
[root@localhost mapreduce]# hadoop fs -mkdir /wordcount/input #第二种。/是相对于hdfs的根目录
然后我们可以在hdfs的web管理中看到目录:(其中tmp和user是我们执行上一个程序产生的目录)

接下来我们将上面的英文文件上传到hdfs的wordcount/input/目录下
[root@localhost mapreduce]# hadoop fs -put test.txt /wordcount/input
从web中查看目录;

测试wordcount程序:(mapreduce启动很慢,因为要启动很多程序)
测试统计hdfs的/wordcount/input目录下的所有的文件,并将统计结果输出到/wordcount/output目录中,/是hdfs的根目录
[root@localhost mapreduce]# hadoop jar hadoop-mapreduce-examples-2.4..jar wordcount /wordcount/input /wordcount/output
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523441540916_0002
// :: INFO impl.YarnClientImpl: Submitted application application_1523441540916_0002
// :: INFO mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1523441540916_0002/
// :: INFO mapreduce.Job: Running job: job_1523441540916_0002
// :: INFO mapreduce.Job: Job job_1523441540916_0002 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1523441540916_0002 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-seconds taken by all map tasks=
Total vcore-seconds taken by all reduce tasks=
Total megabyte-seconds taken by all map tasks=
Total megabyte-seconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counter
查看hdfs的/wordcount/output目录下的文件信息:
[root@localhost mapreduce]# hadoop fs -ls /wordcount/output 查看目录信息
Found items
-rw-r--r-- root supergroup -- : /wordcount/output/_SUCCESS
-rw-r--r-- root supergroup -- : /wordcount/output/part-r-
查看统计结果文件信息:
[root@localhost mapreduce]# hadoop fs -cat /wordcount/output/part-r-
hello
kkk
lll
meinv
也可以从web中下载查看:

hadoop2.4.1伪分布式环境搭建的更多相关文章
- Hadoop2.5.0伪分布式环境搭建
本章主要介绍下在Linux系统下的Hadoop2.5.0伪分布式环境搭建步骤.首先要搭建Hadoop伪分布式环境,需要完成一些前置依赖工作,包括创建用户.安装JDK.关闭防火墙等. 一.创建hadoo ...
- 在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境
近几年大数据越来越火热.由于工作需要以及个人兴趣,最近开始学习大数据相关技术.学习过程中的一些经验教训希望能通过博文沉淀下来,与网友分享讨论,作为个人备忘. 第一篇,在win7虚拟机下搭建hadoop ...
- OS X Yosemite下安装Hadoop2.5.1伪分布式环境
最近开始学习Hadoop,一直使用的是公司配好的环境.用了一段时间后发现对Hadoop还是一知半解,故决定动手在本机上安装一个供学习研究使用.正好自己用的是mac,所以没啥说的,直接安装. 总体流程 ...
- Hadoop学习笔记1:伪分布式环境搭建
在搭建Hadoop环境之前,请先阅读如下博文,把搭建Hadoop环境之前的准备工作做好,博文如下: 1.CentOS 6.7下安装JDK , 地址: http://blog.csdn.net/yule ...
- 【Hadoop】伪分布式环境搭建、验证
Hadoop伪分布式环境搭建: 自动部署脚本: #!/bin/bash set -eux export APP_PATH=/opt/applications export APP_NAME=Ares ...
- 大数据:Hadoop(JDK安装、HDFS伪分布式环境搭建、HDFS 的shell操作)
所有的内容都来源与 Hadoop 官方文档 一.Hadoop 伪分布式安装步骤 1)JDK安装 解压:tar -zxvf jdk-7u79-linux-x64.tar.gz -C ~/app 添加到系 ...
- 【Hadoop离线基础总结】CDH版本Hadoop 伪分布式环境搭建
CDH版本Hadoop 伪分布式环境搭建 服务规划 步骤 第一步:上传压缩包并解压 cd /export/softwares/ tar -zxvf hadoop-2.6.0-cdh5.14.0.tar ...
- HDFS 伪分布式环境搭建
HDFS 伪分布式环境搭建 作者:Grey 原文地址: 博客园:HDFS 伪分布式环境搭建 CSDN:HDFS 伪分布式环境搭建 相关软件版本 Hadoop 2.6.5 CentOS 7 Oracle ...
- Hadoop-2.4.1完全分布式环境搭建
Hadoop-2.4.1完全分布式环境搭建 Hadoop-2.4.1完全分布式环境搭建 一.配置步骤如下: 主机环境搭建,这里是使用了5台虚拟机,在ubuntu 13系统上进行搭建hadoop ...
随机推荐
- adb shell input keyevent值所对应的字符
转自:http://blog.csdn.net/chen825919148/article/details/18732041 0 --> "KEYCODE_UNKNOWN" ...
- PHPCMSV9 黄页新闻、产品、商机均无法浏览具体信息,显示您没有访问该信息的权限!
原帖地址:http://bbs.phpcms.cn/forum.php?mod=viewthread&tid=294956&highlight=%C3%BB%D3%D0%B7%C3%C ...
- python: error while loading shared libraries: libpython2.7.so.1.0: cannot open shared object file: No such file or directory
#vi /etc/ld.so.conf.d/python2.7.conf 加入/usr/local/python27/lib 保存退出后执行 #ldconfig
- MyBatis配置和日志
MyBatis最关键的组成部分是SqlSessionFactory,我们可以从中获取SqlSession,并执行映射的SQL语句.SqlSessionFactory对象可以通过基于XML的配置信息或者 ...
- SpringBoot事件监听
代码演示: package com.boot.event.eventdemo; import org.springframework.boot.SpringApplication; import or ...
- jsp当做第二个servlet request的生命周期 请求 响应 不管中间经历多少个servlet 只要最后一个serlvt执行后 则生命周期结束 request的域消失
jsp当做第二个servlet request的生命周期 请求 响应 不管中间经历多少个servlet 只要最后一个serlvt执行后 则生命周期结束 request的域消失
- 【bzoj2870】最长道路tree 树的直径+并查集
题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每 ...
- nginx日志切割总结
Nginx日志切割 方法1(脚本+定时执行): #step1:加脚本 cut_nginx_log.sh,主进程把USR1信号发给worker,worker接到这个信号后,会重新打开日志文件 #!/ ...
- BZOJ1997:[HNOI2010]PLANAR——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1997 https://www.luogu.org/problemnew/show/P3209 若能 ...
- 【bzoj2743】[HEOI2012]采花 树状数组
题目描述 萧芸斓是Z国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花.花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于公 ...