B. Approximating a Constant Range
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

Find the length of the longest almost constant range.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

Output

Print a single number — the maximum length of an almost constant range of the given sequence.

Sample test(s)
Input
5
1 2 3 3 2
Output
4
Input
11
5 4 5 5 6 7 8 8 8 7 6
Output
5
Note

In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].

题意:求最大区间长度  区间要求满足:区间最大值与最小值的差小于等于1

题解:

例如

5

1 2 3 3 2

差值分别为 2-1=1;

3-2=1;

3-3=0;

2-3=-1;  另外  it's guaranteed that |ai + 1 - ai| ≤ 1.

可以判断 当连续的差值或相隔差值为0 的两个差值 相等时 该段区间结束 更新最大值

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,a;
int main()
{
scanf("%d",&n);
scanf("%d",&a);
int cha=0;
int judge=0;
int l=0,r=0;
int ans=0,exm;
for(int i=1; i<n; i++)
{
scanf("%d",&exm);
cha=exm-a;//计算差值
a=exm;
if(cha==0)//差值为零 相等时
continue;
if(cha!=judge)//当前差值与 之前一个差值比较
{
judge=cha;//更新到当前区间
r=i;
}
else
{
if(i-l>ans)//更新区间大小
ans=i-l;
l=r;
r=i;
}
}
if(n-l>ans)//特列 后端 都相等
ans=n-l;
cout<<ans<<endl;
return 0;
}

  

Codeforces Round #333 (Div. 2) B的更多相关文章

  1. Codeforces Round #333 (Div. 1) C. Kleofáš and the n-thlon 树状数组优化dp

    C. Kleofáš and the n-thlon Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  2. Codeforces Round #333 (Div. 1) B. Lipshitz Sequence 倍增 二分

    B. Lipshitz Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/601/ ...

  3. Codeforces Round #333 (Div. 2) C. The Two Routes flyod

    C. The Two Routes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/602/pro ...

  4. Codeforces Round #333 (Div. 2) B. Approximating a Constant Range st 二分

    B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...

  5. Codeforces Round #333 (Div. 2) A. Two Bases 水题

    A. Two Bases Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/602/problem/ ...

  6. Codeforces Round #333 (Div. 2) B. Approximating a Constant Range

    B. Approximating a Constant Range Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com ...

  7. Codeforces Round #333 (Div. 1) D. Acyclic Organic Compounds trie树合并

    D. Acyclic Organic Compounds   You are given a tree T with n vertices (numbered 1 through n) and a l ...

  8. Codeforces Round #333 (Div. 2)

    水 A - Two Bases 水题,但是pow的精度不高,应该是转换成long long精度丢失了干脆直接double就可以了.被hack掉了.用long long能存的下 #include < ...

  9. Codeforces Round #333 (Div. 1)--B. Lipshitz Sequence 单调栈

    题意:n个点, 坐标已知,其中横坐标为为1~n. 求区间[l, r] 的所有子区间内斜率最大值的和. 首先要知道,[l, r]区间内最大的斜率必然是相邻的两个点构成的. 然后问题就变成了求区间[l, ...

随机推荐

  1. go通过第三方库 mahonia gbk 转utf8

    go get github.com/axgle/mahonia dec := mahonia.NewDecoder("GBK")ret:=dec.ConvertString(res ...

  2. php导出excel表格的使用

    网站后台有很多列表数据,常常都会有导出excel表格的需求,和大家分享一个实用的导出excel表格方法: 不多说,上代码: /** * @param array $data 要导出的数据 * @par ...

  3. lintcode204 单例

    单例   单例 是最为最常见的设计模式之一.对于任何时刻,如果某个类只存在且最多存在一个具体的实例,那么我们称这种设计模式为单例.例如,对于 class Mouse (不是动物的mouse哦),我们应 ...

  4. python常用命令—windows终端查看安装包信息

    1, pip list 会将 Python 的所有安装包全部显示出来, 左边是包名, 右边是包的版本号. 2, pip show 包的名字 会将这个包的名字,版本号,包的功能说明,按装这个包的路径显示 ...

  5. 蓝桥杯算法训练 区间k大数查询

    算法训练 区间k大数查询   问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个 ...

  6. java面试整理

    IO和NIO的区别 这是一个很常见的问题,如果单纯的只回答IO和NIO的区别,只能算及格.我个人觉得应该从以下几个方面回答: 1).IO简介, 2).TCP的三次握手,因为这也是两者的区别之一, 3) ...

  7. java安装环境变量设置

    1,依次打开:我的电脑-->属性-->高级-->环境变量 2,设置用户变量 新建 JAVA_HOME C:\Program Files\Java\j2sdk1.5.0 (JDK的安装 ...

  8. Java 变量和输入输出

    一些重要知识 一个源文件里只能有一个public类,其它类数量不限.文件名与public类名相同 JAVA程序严格区分大小写 JAVA应用程序的执行入口是main方法固定写法:public stati ...

  9. c#笔记整理 关于继承与多态等

    [ 塔 · 第 二 条 约 定 ] c#面向对象基础 整理private.protected.public.abstract等的异同 public 公有访问.不受任何限制. private 私有访问. ...

  10. Deeplearning——Logistics回归

    资料来源:1.博客:http://binweber.top/2017/09/12/deep_learning_1/#more——转载,修改更新 2.文章:https://www.qcloud.com/ ...