不要被线段树这个名字和其长长的代码吓到。

D - Balanced Lineup

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q:
Each line contains a single integer that is a response to a reply and
indicates the difference in height between the tallest and shortest cow
in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

线段树主要的是个树结构,多用于区间修改,查询。修改查询的时间复杂度都为O(long n),是一个很理想的复杂度。

一般输入数据比较多,所以用cin要关闭流同步,或者用scanf,当然最推荐的还是快读。

/*
线段树:区间查询最大最小值
*/ #include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 50020; //总节点数 struct node {
int l, r;
int maxx; //区间最大值
int minx; //区间最小值
}tree[4*maxn]; //总节点数 最坏情况下是4*maxn int n, m, t; inline int read() { //快读
int i = 0, j = 1;
char ch = getchar();
while (ch<'0' || ch>'9') { if (ch == '-')j = -1; ch = getchar(); }
while (ch >= '0'&&ch <= '9') i = i * 10 + ch - '0', ch = getchar();
return i*j;
} void buildtree(int p, int l, int r) { //建树&更新节点
tree[p].l = l; //初始化
tree[p].r = r; //每个节点的左右区间,就是传入的l,r
tree[p].maxx = -1; //把最大值赋值为-1
tree[p].minx = 1e9; //给minx赋值一个在题目中最大的值 if (l == r) { //l==r 代表是叶子节点
tree[p].maxx = tree[p].minx = read();
return;
} int mid = l + r >> 1; //不是叶子节点,就把区间分开 左儿子比右儿子多 (1+5)/2=3 ==> [1~3]--[4~5]
buildtree(p * 2, l, mid); //左区间树
buildtree(p * 2+1, mid + 1, r); //右区间树 tree[p].maxx = max(tree[p * 2].maxx, tree[p * 2 + 1].maxx); //节点的最大值,就是两个儿子节点的最大值
tree[p].minx = min(tree[p * 2].minx, tree[p * 2 + 1].minx); //同理
} int findmax(int p, int x, int y) //查找最大值
{
if (x<=tree[p].l&&tree[p].r <= y) //为什么是<=而不是==,这里是与下边匹配的。
return tree[p].maxx; int Max = -1, mid = (tree[p].l + tree[p].r) / 2;
if (x <= mid)
Max = max(Max, findmax(2 * p, x, y)); //搜索左区间,区间范围仍然是x~y,所以上边是<=
if (y > mid)
Max = max(Max, findmax(2 * p + 1, x, y)); //搜索右区间。
return Max; } int findmin(int p, int x, int y) { //查找最小值 同查找最大值
if (tree[p].l >= x&&tree[p].r <= y)
return tree[p].minx;
int Min = 1e9, mid = (tree[p].l + tree[p].r) / 2;
if (x <= mid)
Min = min(Min, findmin(p * 2, x, y));
if (y > mid)
Min = min(Min, findmin(p * 2 + 1, x, y));
return Min;
} int main() { cin >> n >> m; buildtree(1, 1, n); //可以把输入放在建树里边, int x, y;
for (int i = 0; i < m; i++) {
x = read();
y = read();
cout << findmax(1, x, y)-findmin(1, x, y) << endl;
}
return 0;
}

RMQ,蒟蒻博主还不会。

Balanced Lineup:线段树:区间最值 / RMQ的更多相关文章

  1. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  2. BZOJ-1699 Balanced Lineup 线段树区间最大差值

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...

  3. POJ3264 Balanced Lineup 线段树区间最大值 最小值

    Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...

  4. 【bzoj4695】最假女选手 线段树区间最值操作

    题目描述 给定一个长度为 N 序列,编号从 1 到 N .要求支持下面几种操作:1.给一个区间[L,R] 加上一个数x 2.把一个区间[L,R] 里小于x 的数变成x 3.把一个区间[L,R] 里大于 ...

  5. 【bzoj4355】Play with sequence 线段树区间最值操作

    题目描述 维护一个长度为N的序列a,现在有三种操作: 1)给出参数U,V,C,将a[U],a[U+1],...,a[V-1],a[V]都赋值为C. 2)给出参数U,V,C,对于区间[U,V]里的每个数 ...

  6. 【hdu5306】Gorgeous Sequence 线段树区间最值操作

    题目描述 给你一个序列,支持三种操作: $0\ x\ y\ t$ :将 $[x,y]$ 内大于 $t$ 的数变为 $t$ :$1\ x\ y$ :求 $[x,y]$ 内所有数的最大值:$2\ x\ y ...

  7. HUD.2795 Billboard ( 线段树 区间最值 单点更新 单点查询 建树技巧)

    HUD.2795 Billboard ( 线段树 区间最值 单点更新 单点查询 建树技巧) 题意分析 题目大意:一个h*w的公告牌,要在其上贴公告. 输入的是1*wi的w值,这些是公告的尺寸. 贴公告 ...

  8. cf834D(dp+线段树区间最值,区间更新)

    题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...

  9. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  10. nyoj 119士兵杀敌(三)(线段树区间最值查询,RMQ算法)

    题目119 题目信息 执行结果 本题排行 讨论区 士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军统率着N个士兵,士兵分别编号为1~N,南将军常 ...

随机推荐

  1. 严重: A child container failed during start java.util.concurrent.ExecutionException: org.apache.catalina.LifecycleException: Failed to start component

    自己写了个最简单的springMVC项目练练手,没有用maven,在WebContent中新建了lib文件夹,将jar包复制到这里面,然后add to build path到项目里. 启动Tomcat ...

  2. python3爬虫-网易云排行榜,网易云歌手及作品

    import requests, re, json, os, time from fake_useragent import UserAgent from lxml import etree from ...

  3. 【HDOJ 1285】确定比赛名次(拓扑排序+优先队列)

    Problem Description有N个比赛队(1<=N<=500),编号依次为1,2,3,....,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现在裁判委员 ...

  4. 竞赛题解 - NOIP2018 保卫王国

    \(\mathcal{NOIP2018}\) 保卫王国 - 竞赛题解 按某一个炒鸡dalao名曰 taotao 的话说: \(\ \ \ \ \ \ \ \ \ "一道sb倍增题" ...

  5. mysql对查出来的值,在sql里面拼接我们想要拼接的内容

    MySQL中concat函数使用方法:CONCAT(str1,str2,…) 返回结果为连接参数产生的字符串.如有任何一个参数为NULL ,则返回值为 NULL. 注意:如果所有参数均为非二进制字符串 ...

  6. Yii2中使用Soap WebSerivce

    Soap是一种轻量的.简单的.基于XML(标准通用标记语言下的一个子集)的协议 WebService顾名思义就是web服务,web服务主要有两种,一种是基于soap类型的服务,一种是基于rest类型的 ...

  7. python中函数参数的引用方式

    值传递和引用传递时C++中的概念,在python中函数参数的传递是变量指向的对象的物理内存地址!!! python不允许程序员选择采用传值还是传引用.Python参数传递采用的肯定是“传对象引用”的方 ...

  8. python学习笔记:第11天 闭包及迭代器

    目录 1. 函数名的使用 2. 闭包 3. 迭代器 1. 函数名的使用 其实函数名也是一个变量,但它是一个比较特殊的变量,与小括号配合可以执行函数的变量: 函数名其实和内存一样,也可以使用print查 ...

  9. MFC实现http连接、发送和接收数据

    #include <afxinet.h> // 设置超时 CInternetSession session; session.SetOption(INTERNET_OPTION_CONNE ...

  10. R语言爬虫:CSS方法与XPath方法对比(代码实现)

    CSS选择器和XPath方法都是用来定位DOM树的标签,只不过两者的定位表示形式上存在一些差别: CSS 方法提取节点 library("rvest") single_table_ ...