P2351 [SDOi2012]吊灯

 
 

题意:
  一棵树,能否全部分成大小为x的联通块。

分析:
  显然x是n的约数。然后对于一个约数x,判断能否分成 $ \frac{n}{x} $ 个大小为x的联通块。

  结论:如果x可以,那么一定存在$ \frac{n}{x} $个节点的子树大小是x的倍数。

  证明:上面的结论说明的也就是每个大小是x的倍数的点,对答案的贡献是1(每个点都可以分出一个大小为x的块),加起来就是$ \frac{n}{x} $。

  现在就要考虑一个点u的siz是kx,然后它的子树里如果没有其他点的siz的是x的倍数的话,它的贡献是1,它可以从根节点开始,分出一个包含根节点,一共x个点的联通块。

  然后考虑u的子树里还有一个点v的siz是x的倍数,那么如果它们还能分成两个大小为x的块的话,那么每个这样的点的贡献还是1。首先从在v的子树里一定可以从根开始分出一个大小为x的块(u在其中),然后u的子树里需要找一个大小为x的块,且不使用v中的点。假设去掉v中的点还剩siz[u]-siz[v]个,这也是x的倍数,所以u的子树里,从根开始,不占用v的点,还可以分出一个大小为x的块。说明u的子树可以贡献2,uv各自贡献1。

  如果u的子树还有这样的点,那么把v删掉,还是两个点的情况,所以还是合法的。

  到此发现每个大小为x的倍数的点,会对答案贡献1。$ \frac{n}{x} $$个,就会有$ \frac{n}{x} $个大小为x的联通块,如果小于则不行。

 
代码:
 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; int fa[N], cnt[N], siz[N], n;
vector<int> v; bool check(int x) {
int res = ;
for (int i=x; i<=n; i+=x) res += cnt[i];
return res >= n / x;
} int main() {
n = read();
for (int lim=sqrt(n),i=; i<=lim; ++i) {
if (n % i == ) {
v.push_back(i);
if (n / i != i) v.push_back(n / i);
}
}
sort(v.begin(), v.end());
for (int i=; i<=n; ++i)
fa[i] = read();
for (int T=; T<=; ++T) {
printf("Case #%d:\n",T);
for (int i=; i<=n; ++i) cnt[i] = , siz[i] = ;
for (int i=n; i>=; --i) siz[fa[i]] += siz[i], cnt[siz[i]] ++;
for (int i=; i<v.size(); ++i)
if (check(v[i])) printf("%d\n",v[i]);
if (T != ) for (int i=; i<=n; ++i)
fa[i] = (fa[i] + ) % (i - ) + ;
}
return ;
}

P2351 [SDOi2012]吊灯的更多相关文章

  1. 洛谷P2351 [SDOi2012]吊灯 【数学】

    题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...

  2. [bzoj3004] [SDOi2012]吊灯

    Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...

  3. [SDOi2012]吊灯

    嘟嘟嘟 这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配.交上去开了 ...

  4. BZOJ.3004.[SDOI2012]吊灯(结论)

    题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...

  5. [bzoj3004][SDOI2012]吊灯——樹形DP

    Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...

  6. 【Luogu】P2351吊灯(脑洞后模拟)

    题目链接 这题要智商qwq.玩不来玩不来. 观察到(个P,能观察到的全都是dalao)x是解的充要条件是至少有n/x个节点的size是x的倍数. 证明请看这里 然后这题就变模拟了呀. #include ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  8. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  9. Bzoj3004 吊灯

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 72  Solved: 46 Description        Alice家里有一盏很大的吊灯.所 ...

随机推荐

  1. Spring Framework5.0 学习(3)—— spring配置文件的三种形式

    Spring Framework  是 IOC (Inversion of Control  控制反转)原则的实践. IoC is also known as dependency injection ...

  2. 如何删除Word 2010中的“向下箭头”

    原文:https://jingyan.baidu.com/article/e75aca85552916142edac614.html 在日常办公中,如果从网站复制了一段文字,直接粘贴到Word中时,常 ...

  3. java的串行化

    参考博客:Java 对象的串行化(Serialization) 1,什么是串行化 对象的寿命通常随着生成该对象的程序的终止而终止.有时候,可能需要将对象的状态保存下来,在需要时再将对象恢复.我们把对象 ...

  4. C# Windows服务的安装和卸载批处理

    @ECHO "请按任意键开始安装后台服务. . ."@ECHO "清理原有服务项. . ."%SystemRoot%\Microsoft.NET\Framewo ...

  5. 关于<meta>的各种用处以及移动端的常见问题

    1.优先使用最新版本的IE和Chrome <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1& ...

  6. 【bootstrap】插件

    1.bootstrap.js 和 bootstrap.min.js 都包含了所有的插件. 2.命名空间:即域:域内成员的有效范围.超出范围就是无效. 3.通过 data 属性 API 就能使用所有的 ...

  7. Softmax回归(Softmax Regression, K分类问题)

    Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集:                     系统参数为:      Softmax回归与Logist ...

  8. Hello, GitHub!

    GitHub作为版本控制的软件,我决定重新系统学习这个东西,毕竟以前都是fork.clone... 1. 理解Git思维 首先呢,我一开始就被GitHub和Git两个东西搞昏了,所以有必要理解二者的关 ...

  9. nodejs实战的github地址,喜欢的你还等啥

    第一章.第二章:使用Express + MongoDB搭建多人博客:https://github.com/nswbmw/N-blog 第三章:使用Redis搭建漂流瓶服务器:https://githu ...

  10. HIDU 2094

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2094 产生冠军 Time Limit: 1000/1000 MS (Java/Others)    M ...