题目链接:

B. Clique Problem

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

Find the size of the maximum clique in such graph.

Input

The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

Each of the next n lines contains two numbers xiwi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

Output

Print a single number — the number of vertexes in the maximum clique of the given graph.

Examples
input
4
2 3
3 1
6 1
0 2
output
3

题意:满足上面的式子的点对连一条边,问连完边后最大独立团的点数是多少;
思路:假设xi>=xj,那么xi-wi>=xj+wj,那么按x排序后,对于每一个点就可以与<=xi-wi区间的点相连(这些点区间假设为[l,r]),
那么[l,r]区间的最大团数目加1就可以更新当前点的值了;
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn=2e5+10;
int n,dp[maxn];
std::vector<int> ve;
struct node
{
int x,w;
}po[maxn];
int cmp(node a,node b){return a.x<b.x;}
struct Tree
{
int l,r,mx;
}tr[4*maxn];
void build(int o,int L,int R)
{
tr[o].l=L;tr[o].r=R;tr[o].mx=1;
if(L>=R)return ;
int mid=(tr[o].l+tr[o].r)>>1;
build(2*o,L,mid);build(2*o+1,mid+1,R);
}
int query(int o,int L,int R)
{
if(L<=tr[o].l&&R>=tr[o].r)return tr[o].mx;
int ans=0;
int mid=(tr[o].l+tr[o].r)>>1;
if(L<=mid)ans=max(ans,query(2*o,L,R));
if(R>mid)ans=max(ans,query(2*o+1,L,R));
return ans;
}
void update(int o,int pos,int num)
{
if(tr[o].l==tr[o].r&&tr[o].l==pos){tr[o].mx=num;return ;}
int mid=(tr[o].l+tr[o].r)>>1;
if(pos<=mid)update(2*o,pos,num);
else update(2*o+1,pos,num);
tr[o].mx=max(tr[2*o].mx,tr[2*o+1].mx);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d",&po[i].x,&po[i].w),ve.push_back(po[i].x+po[i].w),dp[i]=1;
sort(po+1,po+n+1,cmp);
sort(ve.begin(),ve.end());
build(1,1,n);
for(int i=1;i<=n;i++)
{
int tep=po[i].x-po[i].w;
int pos=upper_bound(ve.begin(),ve.end(),tep)-ve.begin();
int p=lower_bound(ve.begin(),ve.end(),po[i].x+po[i].w)-ve.begin()+1;
if(pos>0)dp[p]=max(dp[p],query(1,1,pos)+1);
update(1,p,dp[p]);
}
printf("%d\n",query(1,1,n));
return 0;
}

  

 

B. Clique Problem(贪心)的更多相关文章

  1. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces Round #296 (Div. 1) B. Clique Problem 贪心

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces Round #296 (Div. 2) D. Clique Problem [ 贪心 ]

    传送门 D. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  4. [CF527D] Clique Problem - 贪心

    数轴上有n 个点,第i 个点的坐标为xi,权值为wi.两个点i,j之间存在一条边当且仅当 abs(xi-xj)>=wi+wj. 你需要求出这张图的最大团的点数. Solution 把每个点看作以 ...

  5. CodeForces - 527D Clique Problem (图,贪心)

    Description The clique problem is one of the most well-known NP-complete problems. Under some simpli ...

  6. [codeforces 528]B. Clique Problem

    [codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...

  7. Codeforces Round #296 (Div. 1) B - Clique Problem

    B - Clique Problem 题目大意:给你坐标轴上n个点,每个点的权值为wi,两个点之间有边当且仅当 |xi - xj| >= wi + wj, 问你两两之间都有边的最大点集的大小. ...

  8. 回溯法——最大团问题(Maximum Clique Problem, MCP)

    概述: 最大团问题(Maximum Clique Problem, MCP)是图论中一个经典的组合优化问题,也是一类NP完全问题.最大团问题又称为最大独立集问题(Maximum Independent ...

  9. codeforces 442B B. Andrey and Problem(贪心)

    题目链接: B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input ...

随机推荐

  1. s5_day7装饰器作业

    # 一:编写函数,(函数执行的时间是随机的) import time import random # def foo(): # time.sleep(random.randrange(1,5)) # ...

  2. LeetCode:二叉树的后序遍历【145】

    LeetCode:二叉树的后序遍历[145] 题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很 ...

  3. PHP实现文件下载断点续传

    <?php /* * PHP下载断点续传 * from:php100 */ function dl_file_resume($file){ //检测文件是否存在 if (!is_file($fi ...

  4. leetcode每日一题——两数之和

    题目: 两数之和 难度: 简单 描述: 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 解法: class Solutio ...

  5. Oracle数据安全(五)审计

    一.审计的概念 审计是监视和记录用户对数据库所进行操作,以供DBA进行统计和分析.利用审计可以完成下列任务 保证用户能够对自己在数据库中的活动负责. 禁止用户在数据库中从事于自己职责不相符的活动 调查 ...

  6. apache php 60 503

    服务器端:apache php 文件上传,60秒后,返回Response 503 php-fpm.conf: request_terminate_timeout = 600 前算万算没想到这里还有个超 ...

  7. Oracle数据库使用总结

    --1.使用月份作为条件筛选(to_char函数与extract函数使用) select * from test_date where to_char(dqsj,'mm') like '%07%'; ...

  8. Linux之Shell 脚本加密工具-shc

    Much effort, much prosperity. 为什么要加密Shell脚本呢?当然是为了安全! 可能脚本里面涉及到密码之类的就需要进行加密了 一.下载安装shc工具 要保护自己编写的she ...

  9. Spring_管理 Bean 的生命周期

    beans-cycle.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns=&quo ...

  10. [BZOJ2730]矿场搭建

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...