E. Thief in a Shop

题目连接:

http://www.codeforces.com/contest/632/problem/E

Description

A thief made his way to a shop.

As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.

The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).

Find all the possible total costs of products the thief can nick into his knapsack.

Input

The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.

The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.

Output

Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.

Sample Input

3 2

1 2 3

Sample Output

2 3 4 5 6

Hint

题意

有n个数,然后这n个数里面选k个加起来

问你一共能加出来多少种

题解:

多项式加法,加k次,问你最后的数是哪些,显然FFT模板,然后怼一波

其实DP也是可以兹瓷的。

dp[i]表示最少用多少个非a[1]能够构成a[1]*k+i的。

DP代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3+5;
int n,k,a[maxn],dp[maxn*maxn];
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+1+n);
n=unique(a+1,a+1+n)-(a+1);
for(int i=2;i<=n;i++)
a[i]=a[i]-a[1];
for(int i=1;i<=k*a[n];i++)
dp[i]=k+1;
for(int i=2;i<=n;i++)
for(int j=a[i];j<=k*a[i];j++)
dp[j]=min(dp[j],dp[j-a[i]]+1);
for(int i=0;i<=k*a[n];i++)
if(dp[i]<=k)
printf("%d ",a[1]*k+i);
return 0;
}

FFT代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1<<21;
const double PI = acos(-1.0); struct Virt
{
double r,i; Virt(double r = 0.0,double i = 0.0)
{
this->r = r;
this->i = i;
} Virt operator + (const Virt &x)
{
return Virt(r+x.r,i+x.i);
} Virt operator - (const Virt &x)
{
return Virt(r-x.r,i-x.i);
} Virt operator * (const Virt &x)
{
return Virt(r*x.r-i*x.i,i*x.r+r*x.i);
}
}; //雷德算法--倒位序
void Rader(Virt F[],int len)
{
int j = len >> 1;
for(int i=1; i<len-1; i++)
{
if(i < j) swap(F[i], F[j]);
int k = len >> 1;
while(j >= k)
{
j -= k;
k >>= 1;
}
if(j < k) j += k;
}
} //FFT实现
void FFT(Virt F[],int len,int on)
{
Rader(F,len);
for(int h=2; h<=len; h<<=1) //分治后计算长度为h的DFT
{
Virt wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); //单位复根e^(2*PI/m)用欧拉公式展开
for(int j=0; j<len; j+=h)
{
Virt w(1,0); //旋转因子
for(int k=j; k<j+h/2; k++)
{
Virt u = F[k];
Virt t = w*F[k+h/2];
F[k] = u+t; //蝴蝶合并操作
F[k+h/2] = u-t;
w = w*wn; //更新旋转因子
}
}
}
if(on == -1)
for(int i=0; i<len; i++)
F[i].r /= len;
} //求卷积
void Conv(Virt F[],Virt G[],int len)
{
FFT(F,len,1);
FFT(G,len,1);
for(int i=0; i<len; i++)
F[i] = F[i]*G[i];
FFT(F,len,-1);
}
int mx = 0;
bool dp[maxn];
bool a[maxn];
Virt K1[maxn],K2[maxn];
void multiply(bool *A,bool *B,int l)
{
int len = 1;
while(len<=l+1)len*=2;
for(int i=0;i<len;i++)
{
K1[i].r=A[i];
K1[i].i=0;
K2[i].r=B[i];
K2[i].i=0;
}
Conv(K1,K2,len);
for(int i=0;i<=len;i++)
A[i]=K1[i].r>0.5;
}
void solve(int k)
{
if(k==0)
{
dp[0]=true;
}
else if(k%2==1)
{
solve(k-1);
multiply(dp,a,mx);
}
else
{
solve(k/2);
multiply(dp,dp,mx);
}
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
{
int x;scanf("%d",&x);
a[x]=true;mx=max(mx,x);
}
mx*=k;
solve(k);
for(int i=1;i<=mx;i++)
if(dp[i])printf("%d ",i);
cout<<endl;
}

Educational Codeforces Round 9 E. Thief in a Shop dp fft的更多相关文章

  1. codeforces Educational Codeforces Round 9 E - Thief in a Shop

    E - Thief in a Shop 题目大意:给你n ( n <= 1000)个物品每个物品的价值为ai (ai <= 1000),你只能恰好取k个物品,问你能组成哪些价值. 思路:我 ...

  2. Educational Codeforces Round 9 E. Thief in a Shop NTT

    E. Thief in a Shop   A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...

  3. [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)

    Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...

  4. Educational Codeforces Round 58 (Rated for Div. 2) F dp + 优化(新坑) + 离线处理

    https://codeforces.com/contest/1101/problem/F 题意 有n个城市,m辆卡车,每辆卡车有起点\(s_i\),终点\(f_i\),每公里油耗\(c_i\),可加 ...

  5. Educational Codeforces Round 63 (Rated for Div. 2) D dp(最大连续子序列)

    https://codeforces.com/contest/1155/problem/D 题意 一个n个数的数组\(a[i]\),可以选择连续的一段乘x,求最大连续子序列的值 题解 错误思路:贪心, ...

  6. Educational Codeforces Round 57 (Rated for Div. 2) D dp

    https://codeforces.com/contest/1096/problem/D 题意 给一个串s,删掉一个字符的代价为a[i],问使得s的子串不含"hard"的最小代价 ...

  7. Educational Codeforces Round 16 E. Generate a String (DP)

    Generate a String 题目链接: http://codeforces.com/contest/710/problem/E Description zscoder wants to gen ...

  8. Educational Codeforces Round 76 (Rated for Div. 2)E(dp||贪心||题解写法)

    题:https://codeforces.com/contest/1257/problem/E 题意:给定3个数组,可行操作:每个数都可以跳到另外俩个数组中去,实行多步操作后使三个数组拼接起来形成升序 ...

  9. Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压

    题目链接: 题目 E. Another Sith Tournament time limit per test2.5 seconds memory limit per test256 megabyte ...

随机推荐

  1. perl HTML::LinkExtor模块(1)

    use LWP::Simple; use HTML::LinkExtor; $html = get("http://www.baidu.com"); $link = HTML::L ...

  2. 任务调度框架kunka

    kunka kunka是一个任务调度框架.用户只需要在Task接口中实现自己要执行的功能,并且选择合适的执行器,放入TaskManager中,就可以了完成整个任务了. 实现细节 整个任务信息存放在内存 ...

  3. static class 和 non static class 的区别

    static class non static class 1.用static修饰的是内部类,此时这个 内部类变为静态内部类:对测试有用: 2.内部静态类不需要有指向外部类的引用: 3.静态类只能访问 ...

  4. vsftp 服务的启动与问题

    一般系统用户是可以直接登入的如果不可以可能是selinux的原因 执行一下: 更改selinux的配置文件将其设为disable,可我不想重启服务器,有以下解决办法:执行命令:setenforce 0 ...

  5. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  6. C后端设计开发 - 第6章-武技-常见组件上三路

    正文 第6章-武技-常见组件上三路 后记 如果有错误, 欢迎指正. 有好的补充, 和疑问欢迎交流, 一块提高. 在此谢谢大家了.

  7. JS如何获取Input的name或者ID?

    <input name="music" type="image" id="music" onclick="loadmusic ...

  8. C++——初识C++

    1. C关键字 auto int double long char float short signed unsigned struct union enum static switch case d ...

  9. [转]6个HelloWorld

    原文地址:点击打开链接 转这个帖子,是因为看了这个帖子使我明白了一个道理:一旦你发散自己的思维,激发自己的创意,就会发现原来编程是这么的好玩. 原文标题为<6个变态的C语言Hello World ...

  10. 《深入浅出MyBatis技术原理与实战》——1.简介,2.入门

    1. 简介 Java程序都是通过JDBC连接数据库,但是只定义了接口规范,具体的实现交给各个数据库厂商去实现,因为每个数据库都有其特殊性.所以JDBC是一种桥接模式. 这里为什么说JDBC是一种桥接模 ...