bzoj 1477 扩展欧几里德
思路:很裸的求相遇问题。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 2e6 + ;
const int M = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 +; LL a, b, c, m, n, L, x, y; LL exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) {
x = ; y = ;
return a;
} else {
LL gcd, t; gcd = exgcd(b, a % b, x, y);
t = x; x = y; y = t - (a / b) * y;
return gcd;
}
} int main() {
scanf("%lld%lld%lld%lld%lld", &a, &b, &m, &n, &L);
LL gcd = exgcd(n - m, L, x, y);
if((a - b) % gcd != ) {
puts("Impossible");
} else {
x *= ((a - b) / gcd);
x %= L / gcd;
if(x < ) x += abs(L / gcd);
printf("%lld\n", x);
}
return ;
} /*
*/
bzoj 1477 扩展欧几里德的更多相关文章
- bzoj 1407 扩展欧几里德
思路:枚举洞穴个数,用扩展欧几里德暴力判断没两个人的周期. #include<bits/stdc++.h> #define LL long long #define fi first #d ...
- BZOJ 1477: 青蛙的约会
二次联通门 : BZOJ 1477: 青蛙的约会 /* BZOJ 1477: 青蛙的约会 扩展欧几里得 列出方程, 判断一下 */ #include <iostream> #include ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
随机推荐
- 通过psexec实现远程安装软件包
1.在管理机上下载和安装psexec https://docs.microsoft.com/en-us/sysinternals/downloads/psexec 2.在管理机上编写bat脚本,存放在 ...
- 【C++对象模型】第六章 执行期语意学
执行期语意学,即在程序执行时,编译器产生额外的指令调用,确保对象的构造,内存的释放,以及类型转换与临时对象的生成的安全进行. 1.对象的构造和析构 对于类对象的构造,一般在定义之后则开始内部的构造过程 ...
- Enterprise Architect 13 : 需求建模 自动命名并计数
如何给模型中的需求元素配置计数器以自动设置新创建元素的名称和别名: Configure -> Settings -> Auto Names and Counters 设置好后的效果图:
- mysql 高级应用
1.MySQL like 模糊查询 例如:select * from emp where name like '张%'; 2.1MySQL UNION 操作符 SELECT country FROM ...
- bzoj 2956: 模积和 ——数论
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【NOIP】提高组2016 愤怒的小鸟
[题意]Universal Online Judge [算法]状态压缩型DP [题解]看数据范围大概能猜到是状压了. 根据三点确定一条抛物线,枚举两个点之间的抛物线,再枚举有多少点在抛物线上(压缩为状 ...
- Kubernetes: 集群网络配置 - flannel
参考: [ Kubernetes 权威指南 ] Kubernetes 集群搭建可以参考 [ Kubernetes : 多节点 k8s 集群实践 ] 在多个 Node 组成的 Kubernetes 集群 ...
- 多种方法过Codeforces Round #270的A题(奇偶法、打表法和Miller_Rabin(这个方法才是重点))
题目链接:http://codeforces.com/contest/472/problem/A 题目: 题意:哥德巴赫猜想是:一个大于2的素数一定可以表示为两个素数的和.此题则是将其修改为:一个大于 ...
- Python eval 函数说明
eval(str [,globals [,locals ]]) -- 函数将字符串str当成有效Python表达式来求值,并返回计算结果. 例 : eval('3+4') ==> ...
- hdu 1599 find the mincost route (最小环与floyd算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1599 find the mincost route Time Limit: 1000/2000 MS ...