http://poj.org/problem?id=3678

总觉得这题比例题简单。

设a为x取0的点,a+n为x取1的点。

我们还是定义a到b表示取a必须取b。

那么我们有:

当AND:

1.当c=1:add(a,a+n); add(b,b+n);//我们不能取0的点,所以我们让程序一旦取0必会矛盾,下面类似的同理。

2.当c=0:add(a+n,b); add(b+n,a);

当OR

1.当c=1:add(a,b+n);add(b,a+n);

2.当c=0:add(a+n,a);add(b+n,b);

当OR

1.当c=1:add(a+n,b);add(b+n,a);add(a,b+n); add(b,a+n);

2.当c=0:add(a+n,b+n);add(b+n,a+n);add(a,b);add(b,a);

剩下的就是2-SAT(tarjan缩点)的活了。

#include<stack>
#include<cstdio>
#include<cstring>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
inline int read(){
int x=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*w;
}
const int N=;
const int M=;
struct node{
int to;
int nxt;
}edge[M*];
int head[N],dfn[N],low[N],to[N];
int n,m,t,l,cnt;
bool instack[N*];
stack<int>q;
inline void add(int u,int v){
cnt++;
edge[cnt].to=v;
edge[cnt].nxt=head[u];
head[u]=cnt;
return;
}
void tarjan(int u){
t++;
dfn[u]=t;
low[u]=t;
q.push(u);
instack[u]=;
for(int i=head[u];i!=;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(instack[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
int v;
l++;
do{
v=q.top();
q.pop();
instack[v]=;
to[v]=l;
}while(v!=u);
}
return;
}
//a为x取0的点,a+n为x取1的点
int main(){
int n=read();
int m=read();
for(int i=;i<=m;i++){
int a=read();
int b=read();
int c=read();
char op[];
scanf("%s",op);
if(op[]=='A'){
if(c){
add(a,a+n);
add(b,b+n);
}else{
add(a+n,b);
add(b+n,a);
}
}
if(op[]=='O'){
if(c){
add(a,b+n);
add(b,a+n);
}else{
add(a+n,a);
add(b+n,b);
}
}
if(op[]=='X'){
if(c){
add(a+n,b);
add(b+n,a);
add(a,b+n);
add(b,a+n);
}else{
add(a+n,b+n);
add(b+n,a+n);
add(a,b);
add(b,a);
}
}
}
for(int i=;i<n*;i++){
if(!dfn[i])tarjan(i);
}
for(int i=;i<n;i++){
if(to[i]==to[i+n]){
printf("NO\n");
return ;
}
}
printf("YES\n");
return ;
}

POJ3678:Katu Puzzle——题解的更多相关文章

  1. POJ3678 Katu Puzzle 【2-sat】

    题目 Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean ...

  2. poj3678 Katu Puzzle 2-SAT

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6714   Accepted: 2472 Descr ...

  3. POJ-3678 Katu Puzzle 2sat

    题目链接:http://poj.org/problem?id=3678 分别对and,or,xor推出相对应的逻辑关系: 逻辑关系 1 0  A and B     A'->A,B'->B ...

  4. POJ3678 Katu Puzzle

    原题链接 \(2-SAT\)模板题. 将\(AND,OR,XOR\)转换成\(2-SAT\)的命题形式连边,用\(tarjan\)求强连通分量并检验即可. #include<cstdio> ...

  5. POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9987   Accepted: 3741 Descr ...

  6. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  7. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  8. POJ 3678 Katu Puzzle (2-SAT)

                                                                         Katu Puzzle Time Limit: 1000MS ...

  9. POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 2401 Descr ...

随机推荐

  1. Eclipse - 配置优化

    去除不需要的启动加载项 Window --> Preferences -->General --> Startup and Shutdown 关闭自动更新 Window --> ...

  2. Net Core学习笔记

    Net Core 官网:https://dotnet.github.io/ Net Core Api: https://docs.microsoft.com/en-us/dotnet/api/?vie ...

  3. Web应用服务器性能压力测试

    压力测试需要关注三个方面:如何正确产生压力.如何定位瓶颈.如何预估系统的承载能力 产生压力的方法 通常可以写脚本产生压力机器人对服务器进行发包和收包操作,也可以使用现有的工具(像jmeter.Load ...

  4. lesson 24 A skeleton in the cupboard

    lesson 24 A skeleton in the cupboard conceal sth from sb 对某人隐藏某事 He conceals his girlfriend from his ...

  5. 自己来编写一份 Python 脚本 第一版

    解决问题 我们已经探索了 Python 语言中的许多部分,现在我们将通过设计并编写一款程序来了解如何把这些部分组合到一起.这些程序一定是能做到一些有用的事情.这节的Python教程就是教大家方法去学习 ...

  6. Python对文本文件逐行扫描,将含有关键字的行存放到另一文件

    #逐行统计关键字行数,并将关键字所在行存放在新的文件中 keyword = "INFO" b = open("C:\\Users\\xxx\\Documents\\new ...

  7. CodeForces 908C. New Year and Curling 解题报告 Java

    1. 思路 这题实际上是个几何问题——两个外相切的圆,由勾股定理,他们的纵坐标有以下的规律: 则有$$y_{n+1} = y_{n} + \sqrt{(2r)^2 - (x_{n} - x_{n+1} ...

  8. solidity事件详解

    很多同学对Solidity 中的Event有疑问,这篇文章就来详细的看看Solidity 中Event到底有什么用? 写在前面 Solidity 是以太坊智能合约编程语言,阅读本文前,你应该对以太坊. ...

  9. ThinkPHP - 4 - 学习笔记(2015.4.12)

    ThinkPHP D方法 D方法用于实例化自定义模型类,是ThinkPHP框架对Model类实例化的一种封装,并实现了单例模式,支持跨项目和分组调用,调用格式如下:D('[项目://][分组/]模型' ...

  10. [C++] Class (part 2)

    Members that are const or reference must be initialized. Similary, members that are of a class type ...