bzoj2257[POI2011]Programming Contest
首先可以费用流建图,左边一堆点表示人,右边一堆点表示题,源点向每个人连floor(t/r)条边,费用依次为r,2r,3r….然后写了一个卡不过去,动态加边也卡不过去,然后我想:这里一定有一些不为人知的卡常黑科技!然后去查题解发现不是费用流…因为只有源点向人的连边有费用,那么费用流的过程其实是:考虑让尽量多的人做费用为r的第一道题,然后让尽量多的人做费用为2r的第二道题…然后我们发现,写一个动态加边的dinic就可以了…我这里没有加边,直接把源点向人连边的边权重置,效果是一样的.
边权重置之后就不能沿着反向边反悔了,但这道题的性质使得不考虑反悔的情况也是对的.如果考虑费用为r的时候让1号人做了1号题,然后考虑费用为2r的时候发现可以让2号人做1号题,1号人做2号题,这种情况是不会出现的,因为在考虑费用为r的时候就可以让2号人做1号题,1号人做2号题.
一开始跑费用流T了好几发,然后dinic当前弧优化写残了又T了好几发...
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,maxm=;
struct edge{
int to,next,w;
}lst[maxm];int len=,first[maxn],_first[maxn];
void addedge(int a,int b,int w){
lst[len].to=b;lst[len].next=first[a];lst[len].w=w;first[a]=len++;
lst[len].to=a;lst[len].next=first[b];lst[len].w=;first[b]=len++;
}
int q[maxn],dis[maxn],vis[maxn],s,t,head,tail,T;
bool bfs(){
head=tail=;vis[s]=++T;dis[s]=;q[tail++]=s;
while(head!=tail){
int x=q[head++];
for(int pt=first[x];pt!=-;pt=lst[pt].next){
if(lst[pt].w&&vis[lst[pt].to]!=T){
dis[lst[pt].to]=dis[x]+;vis[lst[pt].to]=T;q[tail++]=lst[pt].to;
}
}
}
if(vis[t]==T)memcpy(_first,first,sizeof(first));
return vis[t]==T;
}
int dfs(int x,int lim){
if(x==t)return lim;
int flow=,a;
for(int pt=_first[x];pt!=-;pt=lst[pt].next){
_first[x]=pt;
if(lst[pt].w&&dis[lst[pt].to]==dis[x]+&&(a=dfs(lst[pt].to,min(lst[pt].w,lim-flow)))){
lst[pt].w-=a;lst[pt^].w+=a;flow+=a;
if(lim==flow)return lim;
}
}
return flow;
}
int dinic(){
int ans=,x;
while(bfs())while(x=dfs(s,0x7f7f7f7f))ans+=x;
return ans;
}
int n,m,r,lim,k;
int main(){
memset(first,-,sizeof(first));
scanf("%d%d%d%d%d",&n,&m,&r,&lim,&k);
s=;t=n+m+;
for(int i=;i<=m;++i)addedge(n+i,t,);
int a,b;
for(int i=;i<=k;++i){
scanf("%d%d",&a,&b);
addedge(a,n+b,);
}
int ans1=,ans2=;
for(int i=;i<=n;++i)addedge(s,i,);
for(int j=;j*r<=lim;++j){
int tmp=dinic();ans1+=tmp;ans2+=tmp*j*r;
if(tmp==)break;
for(int i=;i<=n;++i){
lst[len-i*].w=;lst[len-i*+].w=;
}
}
printf("%d %d\n",ans1,ans2);
return ;
}
bzoj2257[POI2011]Programming Contest的更多相关文章
- BZOJ2557[Poi2011]Programming Contest——匈牙利算法+模拟费用流
题目描述 Bartie and his friends compete in the Team Programming Contest. There are n contestants on each ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- ZOJ 3703 Happy Programming Contest
偏方记录背包里的物品.....每个背包的价值+0.01 Happy Programming Contest Time Limit: 2 Seconds Memory Limit: 65536 ...
- Happy Programming Contest(ZOJ3703)(01背包+路径储存)
Happy Programming Contest ZOJ3703 老实说:题目意思没看懂...(希望路过的大神指点) 最后那个the total penalty time是什么意思啊!!! 还是学 ...
- The 2015 China Collegiate Programming Contest A. Secrete Master Plan hdu5540
Secrete Master Plan Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Othe ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Capture the Flag
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5503 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Team Formation
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5494 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Beauty of Array
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5496 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Lunch Time
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5499 The 12th Zhejiang Provincial ...
随机推荐
- git改密码出现授权问题
git修改密码后显示Authentication failed for …… ,意思就是电脑修改密码后导致和git账户密码不匹配 解决方法:
- java 关键字super和this
super关键字 作用:调用父类的构造器 只能出现在子类的构造其中,并且必须是第一行 super()中的参数,决定了调用父类的那个构造器 注:如果子类构造器中没有出现super,则默认加上super( ...
- 20145209 2016-2017-2 《Java程序设计》第3周学习总结
20145209 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 1.构造方法决定类生成对象的方式 用this将已存在的参数的值指定给此参数. 用new建立新 ...
- [Python3.X]python 实现斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一 ...
- springboot之RMI的使用
1.RMI 指的是远程方法调用 (Remote Method Invocation).它是一种机制,能够让在某个 Java虚拟机上的对象调用另一个 Java 虚拟机中的对象上的方法.可以用此方法调用的 ...
- springboot与activemq的使用
1.springboot和activemq的使用相对来说比较方便了,我在网上看了很多其他的资料,但是自己写出来总是有点问题所以,这里重点描述一下遇到的一些问题. 2.至于activemq的搭建和spr ...
- Spring Boot 2.x Redis多数据源配置(jedis,lettuce)
Spring Boot 2.x Redis多数据源配置(jedis,lettuce) 96 不敢预言的预言家 0.1 2018.11.13 14:22* 字数 65 阅读 727评论 0喜欢 2 多数 ...
- Selenium WebDriver(Python)API
1.通过示例介绍Selenium-WebDriver 一个简单的入门方法就是这个例子,它在Google上搜索术语“Cheese”,然后将结果页面的标题输出到控制台. java csharp pytho ...
- Jenkins构建完成后实现自动将war包部署到指定服务器
首先我们需要确定我们的jenkins安装了:publish over ssh 插件,如果没有安装,到-->jenkins首页-->系统管理-->插件管理-->可选安装里面去搜 ...
- 利用爬虫、SMTP和树莓派3B发送邮件(爬取墨迹天气预报信息)
-----------------------------------------学无止境----------------------------------------- 前言:大家好,欢迎来到誉雪 ...