题目链接:http://poj.org/problem?id=1041

题目:

题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发又回到起点的字典序最小的路径,如果达不到输出Round trip does not exist.

思路:首先得判断是否存在欧拉回路,如果不存在则输出“Round trip does not exist.”。记录每个路口的度,如果存在度为奇数得路口则是不存在欧拉回路得图,否则用mp[u][t]=v来表示u可以通过t这条街道到达v,跑一边欧拉回路并记录路径即可。

代码实现如下:

 #include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<ll, int> pli;
typedef pair<int, ll> pil;;
typedef pair<int, int> pii;
typedef unsigned long long ull; #define lson i<<1
#define rson i<<1|1
#define bug printf("*********\n");
#define FIN freopen("D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0); const double eps = 1e-;
const int mod = ;
const int maxn = 1e6 + ;
const double pi = acos(-);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f; int s, u, v, t, mx, p;
int mp[][], in[], vis[], ans[]; void eulergraph(int s) {
for(int i = ; i <= mx; i++) {
if(mp[s][i] && !vis[i]) {
vis[i] = ;
eulergraph(mp[s][i]);
ans[++p] = i;
}
}
} int main() {
//FIN;
while(~scanf("%d%d", &u, &v)) {
if(u == && v == ) break;
s = min(u, v);
p = ;
memset(in, , sizeof(vis));
memset(mp, , sizeof(mp));
memset(vis, , sizeof(vis));
scanf("%d", &t);
in[u]++, in[v]++;
mx = t;
mp[u][t] = v, mp[v][t] = u;
while(~scanf("%d%d", &u, &v)) {
if(u == && v == ) break;
scanf("%d", &t);
mx = max(mx, t);
in[u]++, in[v]++;
mp[u][t] = v, mp[v][t] = u;
}
int flag = ;
for(int i = ; i <= ; i++) {
if(in[i] & ) {
printf("Round trip does not exist.\n");
flag = ;
break;
}
}
if(flag) continue;
eulergraph(s);
for(int i = p; i >= ; i--) {
printf("%d%c", ans[i], i == ? '\n' : ' ');
}
}
return ;
}

John's trip(POJ1041+欧拉回路+打印路径)的更多相关文章

  1. UVA302 John's trip(欧拉回路)

    UVA302 John's trip 欧拉回路 attention: 如果有多组解,按字典序输出. 起点为每组数据所给的第一条边的编号较小的路口 每次输出完额外换一行 保证连通性 每次输入数据结束后, ...

  2. Uva 10054 欧拉回路 打印路径

    看是否有欧拉回路 有的话打印路径 欧拉回路存在的条件: 如果是有向图的话 1.底图必须是连通图 2.最多有两个点的入度不等于出度 且一个点的入度=出度+1 一个点的入度=出度-1 如果是无向图的话 1 ...

  3. poj1041 John's trip——字典序欧拉回路

    题目:http://poj.org/problem?id=1041 求字典序欧拉回路: 首先,如果图是欧拉图,就一定存在欧拉回路,直接 dfs 即可,不用 return 判断什么的,否则TLE... ...

  4. Watchcow(POJ2230+双向欧拉回路+打印路径)

    题目链接:http://poj.org/problem?id=2230 题目: 题意:给你m条路径,求一条路径使得从1出发最后回到1,并满足每条路径都恰好被沿着正反两个方向经过一次. 思路:由于可以回 ...

  5. POJ1041 John's trip

    John's trip Language:Default John's trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: ...

  6. UVA 10054 The Necklace(欧拉回路,打印路径)

    题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  7. BFS+打印路径

    题目是给你起点sx,和终点gx:牛在起点可以进行下面两个操作: 步行:John花一分钟由任意点X移动到点X-1或点X+1. 瞬移:John花一分钟由任意点X移动到点2*X. 你要输出最短步数及打印路径 ...

  8. Java实现John's trip(约翰的小汽车)

    1 问题描述 John's trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8998 Accepted: 3018 Sp ...

  9. LCS(打印路径) POJ 2250 Compromise

    题目传送门 题意:求单词的最长公共子序列,并要求打印路径 分析:LCS 将单词看成一个点,dp[i][j] = dp[i-1][j-1] + 1 (s1[i] == s2[j]), dp[i][j] ...

随机推荐

  1. 《剑指offer》---顺时针打印矩阵

    本文算法使用python3实现 1. 问题1 1.1 题目描述:   输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 ...

  2. lintcode-189-丢失的第一个正整数

    189-丢失的第一个正整数 给出一个无序的正数数组,找出其中没有出现的最小正整数. 样例 如果给出 [1,2,0], return 3 如果给出 [3,4,-1,1], return 2 挑战 只允许 ...

  3. ubuntu 安装lua错误

    转自:http://www.cnblogs.com/softidea/archive/2016/03/02/5236498.html lua.c:80:31: fatal error: readlin ...

  4. mysql学习之主从复制

    该文使用mysql5.5 centos6.5 64位 一.主从复制的作用 1.如果主服务器出现问题,可以快速切换到从服务器. 2.对与实时性要求不高或者更新不频繁的应用可以在从服务器上执行查询操作,降 ...

  5. C++基础知识(二)

    八. 继承:让某个类的对象获得另一个类的对象的特性.通过继承可实现代码重用,即从已存在的类派生出的一个新类将自动具有原来那个类的特性. 类的继承还具有:(1)单向性:A类为B类的基类(父类),则派生类 ...

  6. Android命名格式化详解

     严格换行 一般情况下一个“:”一换行 建议函数的“{}”分别占一行 例:public void ooSomething() { …… } 不要用: 例:public void doSomething ...

  7. P2587 [ZJOI2008]泡泡堂

    题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏泡泡堂.每一场比赛前,对阵双方的教练向组 ...

  8. Greenlet-手动切换

    yield()是自己写的协程,Greenlet( )是已经封装好了的协程. 协程:遇到 I/O 操作就切换到别的地方了(先去处理其他携程去了).等原协程的 I/O 操作一完成就切回去.这样就把 I/O ...

  9. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  10. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...