51nod1667 概率好题
一个数,数据组数(T<=5)
对于每组数据 输入顺序为
k1 L1 R1...Lk1 Rk1
k2 L1 R1...Lk2 Rk2
(k1,k2<=8,1<=L<=R<=10^7)
甲胜、平局、乙胜的概率。
(显然这个概率是有理数,记为p/q,则输出答案为(p/q)%(1e9+7))(逆元)
1
1 1 2
1 1 4
125000001 250000002 625000005
数学问题 容斥
$[L_i,R_i]$的限制看上去很迷,不怎么好做。
如果能去掉下界的话,原问题似乎可以转化成容斥求方程解的个数的问题。
我们来试试去掉下界:
设前ki个集合为 $R_i - x_i$,后ki个集合为 $ L_i + x_i $
此时x的取值范围是 $[0,R_i - L_i]$
那么甲赢乙的情况需要满足的条件是:
$$\sum_{i=1}^{k_1} R_i-x_i > \sum_{j=1}^{k_2} L_j+y_j $$
$$\sum_{i=1}^{k_1} x_i + \sum_{j=1}^{k_2} y_j< \sum_{i=1}^{k_1} R_i -\sum_{j=1}^{k_2} L_j $$
我们惊喜地发现右边是常数,那么可以用组合数+容斥算方程解的个数辣
甲乙平手的情况,只需要把上面的大于换成等于号即可。
乙赢甲的情况,可以把上式取负计算解个数,也可以直接用总方案数减去前两问方案数。
总方案数当然就是所有的$R_i-L_i+1$的乘积
答案当然就是满足条件的方案数除以总方案数
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define LL long long
using namespace std;
const int mod=1e9+;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*-''+ch;ch=getchar();}
return x*f;
}
int ksm(int a,int k){
int res=;
while(k){
if(k&)res=(LL)res*a%mod;
a=(LL)a*a%mod;
k>>=;
}
return res;
}
int fac[mxn*],inv[mxn*];
void init(){
int ed=mxn*;
fac[]=fac[]=;inv[]=inv[]=;
for(int i=;i<ed;i++){
fac[i]=(LL)fac[i-]*i%mod;
inv[i]=((-mod/i*(LL)inv[mod%i]%mod)+mod)%mod;
}
return;
}
int C(int n,int m){
if(m>n || n<)return ;
// return (LL)fac[n]*inv[m]%mod*inv[n-m]%mod;
int res=;
for(int i=;i<=m;i++){
res=(LL)res*(n-m+i)%mod;
}
for(int i=;i<=m;i++){
res=(LL)res*ksm(i,mod-)%mod;
}
return res;
}
int ans1,ans2,ans3;//1 2 0
int n,smm,lower=;
int k1,k2,L[mxn],R[mxn];
void calc(int pos,int f,int x){
if(pos>n){
ans1=((LL)ans1+f*C(smm-x+n-,n))%mod;
// printf("%d %d\n",smm-x+n-1,n);
ans2=((LL)ans2+f*C(smm-x+n-,n-))%mod;
// printf("%d\n",ans1);
return;
}
calc(pos+,-f,x+R[pos]-L[pos]+);
calc(pos+,f,x);
return;
}
int main(){
int i,j;
// init();
int T=read();
while(T--){
ans1=ans2=ans3=;
lower=;smm=;
k1=read();
for(i=;i<=k1;i++){
L[i]=read();R[i]=read();
smm+=R[i];
}
k2=read();
for(i=;i<=k2;i++){
L[i+k1]=read();R[i+k1]=read();
smm-=L[i+k1];
}
n=k1+k2;
for(i=;i<=n;i++)lower=(LL)lower*(R[i]-L[i]+)%mod;
calc(,,);
int INV=ksm(lower,mod-);
ans3=((LL)lower-ans1-ans2)*INV%mod;
ans1=(LL)ans1*INV%mod;
ans2=(LL)ans2*INV%mod;
ans1=(ans1+mod)%mod;
ans2=(ans2+mod)%mod;
ans3=(ans3+mod)%mod;
printf("%d %d %d\n",ans1,ans2,ans3);
}
return ;
}
设前ki个集合为 $R_i - x_i$,后ki个集合为 $ L_i + x_i $此时x的取值范围是 $[0,R_i - L_i]$那么甲赢乙的情况需要满足的条件是:$$\sum_{i=1}^{k_1} R_i-x_i > \sum_{j=1}^{k_2} L_j+y_j $$$$\sum_{i=1}^{k_1} x_i + \sum_{j=1}^{k_2} y_j< \sum_{i=1}^{k_1} R_i -\sum_{j=1}^{k_2} L_j $$我们惊喜地发现右边是常数,那么可以用组合数+容斥算方程解的个数辣甲乙平手的情况,只需要把上面的大于换成等于号即可。乙赢甲的情况,可以把上式取负计算解个数,也可以直接用总方案数减去前两问方案数。总方案数当然就是所有的$R_i-L_i+1$的乘积
51nod1667 概率好题的更多相关文章
- 51nod 1667 概率好题
Description: 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S2同理 若S1>S2甲胜 若S1=S2 ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- 概率好题 Light OJ 1027
题目大意:你在迷宫里,有n扇门,每个门有一个val,这个val可正可负,每次通过一扇门需要abs(x)分钟,如果这个门的val是正的,那么就直接出了迷宫,否则回到原地,问出去迷宫的期望是多少? 思路: ...
- A - Arcade Game Gym - 100814A (概率思维题)
题目链接:https://cn.vjudge.net/contest/285964#problem/A 题目大意:每一次给你你一个数,然后对于每一次操作,可以将当前的数的每一位互换,如果互换后的数小于 ...
- 51Nod 1667 概率好题 - 容斥原理
题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...
- LightOJ 1218 概率水题(几何分布)
题意:给你一个n面骰子,问你投出所有面需要的次数的期望值是多少. 题解:放在过去估计秒解,结果现在自己想好久,还查了下,有人用极限证明...实际上仔细想想这种情况投出与前面不一样的概率p的倒数就是次数 ...
- 集训第六周 数学概念与方法 概率 N题
N - 概率 Time Limit:4000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit Status ...
- 集训第六周 数学概念与方法 概率 F题
Submit Status Description Sometimes some mathematical results are hard to believe. One of the common ...
- 【51nod 1667】概率好题
题目 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S2同理 若S1>S2甲胜 若S1=S2平局 否则乙胜 分别 ...
随机推荐
- python 抓取网上OJ试题
学校工作需要,需架设一台内网OJ服务器,采用了开源的hustoj.试题下载了hustoj的freeprblem的xml文件.导入时出现很多错误,不知什么原因.另外要将历年noip复赛试题加上去,但苦于 ...
- scrapy(2)——scrapy爬取新浪微博(单机版)
Sina爬虫教程 Scrapy环境搭建 环境:window10 + python2.7(包含scrapy)+ mongoDB 1.1 安装集成了python2.7的anaconda ana ...
- LintCode-88.最近公共祖先
最近公共祖先 给定一棵二叉树,找到两个节点的最近公共父节点(LCA). 最近公共祖先是两个节点的公共的祖先节点且具有最大深度. 注意事项 假设给出的两个节点都在树中存在 样例 对于下面这棵二叉树 LC ...
- The New Day
于博毅 160809107 爱好电脑研究 选大学专业的时候,把计算机类放在了第一专业,当时从小就很喜欢计算机,以前有接触过编程但仅限于看书,并没有动手实践过,选课的时候看了一下专业课程,都是我想学的 ...
- 【week6】用户数
小组名称:nice! 小组成员:李权 于淼 杨柳 刘芳芳 项目内容:约跑app alpha发布48小时以后用户数如何,是否达到预期目标,为什么,是否需要改进,如何改进(或理性估算). 首先我们的app ...
- oracle怎样查询索引的使用情况
查询用户的索引select index_name,table_name,tablespace_name, index_type,uniqueness , status from dba_indexes ...
- C#里面Console.Write()和Console.WriteLine()有什么区别?
Console.Write()和Console.WriteLine()都是System.Console提供的方法,两着主要用来将输出流由指定的输出装置(默认为屏幕)显示出来.两着间的差异在Consol ...
- springMVC视图有哪些?-009
html,json,pdf等. springMVC 使用ViewResolver来根据controller中返回的view名关联到具体的view对象. 使用view对象渲染返回值以生成最终的视图,比如 ...
- shit antd & Merry Christmas bug
shit antd & Merry Christmas bug https://github.com/ant-design/ant-design/issues/13098 antd 玩大了? ...
- 第43天:事件对象event
一.事件对象事件:onmouseover. onmouseout. onclickevent //事件的对象 兼容写法:var event = event || window.event; event ...