Road Construction
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10141   Accepted: 5031

Description

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 ton. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

Output

One line, consisting of an integer, which gives the minimum number of roads that we need to add.

Sample Input

Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10 Sample Input 2
3 3
1 2
2 3
1 3

Sample Output

Output for Sample Input 1
2 Output for Sample Input 2
0 题意:有n个旅游景点和r条路,任意两个景点之间都间接或直接的连在一起,但是有时候道路施工时我们无法走这条路,也就是说两个景点之间的道路断了,问现在最少添加多少条通道,使任意两个景点之间都不止一条通道 题解:显而易见此题是让求最少添加多少条路使图双连通,因为所有的点都是相连的,只是不是双连通,我们可以把原始数据看做是一个双连通图去掉了几条边所变成的图形,现在我们需要将这几条边加上去,一个双连通图其度数至少为2,所以当我们遇见度数为1的点时记录下来,最后度数为1的点的总数(sum+1)/2就是最后结果 注意:输入输出真坑,本来以为每组输入和输出前都要输出字符串的 结果一直wa
#include<stdio.h>
#include<string.h>
#include<stack>
#include<algorithm>
#define MAX 21000
#include<vector>
#define MAXM 2001000
#define INF 0x7ffffff
using namespace std;
int n,m,num,bridge;
int head[MAX],ans;
int in[MAX];
int low[MAX],dfn[MAX];
int instack[MAX],iscut[MAX];
int addbcc[MAX];
int dfsclock,bccno[MAX];
int bcccnt;
stack<int>s;
vector<int>newmap[MAX];
vector<int>bcc[MAX];
struct node
{
int beg,end,next;
}edge[MAXM];
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b,i;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
}
void tarjan(int u,int fa)
{
int i,j,v;
s.push(u);
instack[u]=1;
low[u]=dfn[u]=++dfsclock;
int son=0;
int flag=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(v==fa&&flag)//去重边
{
flag=0;
continue;
}
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])//是桥
bridge++;
}
else
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
bcccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
bccno[v]=bcccnt;
if(v==u)
break;
}
}
}
void find(int l,int r)
{
int i;
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(iscut,0,sizeof(iscut));
dfsclock=bcccnt=0;
for(i=l;i<=r;i++)
{
if(!dfn[i])
tarjan(i,-1);
}
}
void suodian()
{
int u,v,i;
memset(in,0,sizeof(in));
for(i=0;i<ans;i+=2)
{
u=bccno[edge[i].beg];
v=bccno[edge[i].end];
if(v!=u)
{
newmap[u].push_back(v);
newmap[v].push_back(u);
in[u]++;
in[v]++;
}
}
}
void solve()
{
int sum,i,j;
sum=0;
for(i=1;i<=bcccnt;i++)
{
if(in[i]==1)
sum++;
}
printf("%d\n",(sum+1)/2);
}
int main()
{
int i,j,k,t;
k=1;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}

  

poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】的更多相关文章

  1. POJ 1236--Network of Schools【scc缩点构图 &amp;&amp; 求scc入度为0的个数 &amp;&amp; 求最少加几条边使图变成强联通】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13325   Accepted: 53 ...

  2. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  3. 【边双连通】poj 3352 Road Construction

    http://poj.org/problem?id=3352 [题意] 给定一个连通的无向图,求最少加多少条边使得这个图变成边双连通图 [AC] //#include<bits/stdc++.h ...

  4. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  5. POJ 3352 Road Construction (边双连通分量)

    题目链接 题意 :有一个景点要修路,但是有些景点只有一条路可达,若是修路的话则有些景点就到不了,所以要临时搭一些路,以保证无论哪条路在修都能让游客到达任何一个景点 思路 :把景点看成点,路看成边,看要 ...

  6. poj 3352 : Road Construction 【ebcc】

    题目链接 题意:给出一个连通图,求最少加入多少条边可使图变成一个 边-双连通分量 模板题,熟悉一下边连通分量的定义.最后ans=(leaf+1)/2.leaf为原图中size为1的边-双连通分量 #i ...

  7. POJ 3352 Road Construction(边—双连通分量)

    http://poj.org/problem?id=3352 题意: 给出一个图,求最少要加多少条边,能把该图变成边—双连通. 思路:双连通分量是没有桥的,dfs一遍,计算出每个结点的low值,如果相 ...

  8. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  9. Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

     http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...

随机推荐

  1. CODEVS 2994 超级弹珠

    题目描述 Description 奶牛们最近从著名的奶牛玩具制造商Tycow那里,买了一套仿真版彩蛋游戏设备.Bessie把她们玩游戏的草坪划成了N*N单位的矩阵,同时列出了她的K个对手在草地上的位置 ...

  2. 10 Best Responsive HTML5 Frameworks and Tools

    http://designinstruct.com/roundups/html5-frameworks/

  3. 数据库应该使用异步吗 Should my database calls be Asynchronous?

    Should my database calls be Asynchronous? http://blogs.msdn.com/b/rickandy/archive/2009/11/14/should ...

  4. C#基础|初探反射

    什么是反射 我们编写的C#代码都可以编译成exe文件或dll文件.暂时先把他们叫做程序集吧,程序集中包含了很多信息.你写了一个类,类中会有字段,有属性,有方法,编译是会把这些信息保存在程序集中,暂时把 ...

  5. VS Extension: Open Web Address with Visual Studio Browser

    使用VS 打开链接 using Microsoft.VisualStudio.Shell; using Microsoft.VisualStudio.Shell.Interop; ... public ...

  6. BZOJ 3982 Stacking Plates 解题报告

    我们首先可以得到:如果有一堆盘子里有一些相邻的盘子的直径相等,那么自然这些盘子可以统一处理,就可以缩成一个了. 然后我们接着考虑给每一堆盘子都染上一种颜色,那么操作的次数 step = diff * ...

  7. LibLinear(SVM包)使用说明之(三)实践

    LibLinear(SVM包)使用说明之(三)实践 LibLinear(SVM包)使用说明之(三)实践 zouxy09@qq.com http://blog.csdn.net/zouxy09 我们在U ...

  8. DOM in Angular2

    <elementRef> import {ElementRef} from "@angular/core"; constructor(private element:  ...

  9. dropdownlist无刷新传值

    既然局部刷新,其实没有必要用服务器控件,即便用了服务器控件,也不应该将AutoPostBack="true" ,这将导致页面回发并刷新,因此去掉下拉框的该属性 至于局部改变div的 ...

  10. 目录重定向的源代码工程( linux平台利用VFS实现目录重定向驱动)虚拟磁盘MINIPORT驱动代码(雨中风华)

    http://download.csdn.net/user/fanxiushu/uploads/2 http://download.csdn.net/user/fanxiushu/uploads/1