bzoj2734: [HNOI2012]集合选数
Description
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。
Input
只有一行,其中有一个正整数 n,30%的数据满足 n≤20。
Output
仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。
Sample Input
Sample Output
【样例解释】
有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 100005
#define mod 1000000001
using namespace std;
typedef long long int64;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int n,m,list[],cnt,sta[];
bool bo[maxn];
int64 f[][],ans;
bool check(int s){
int last=;
for (;s;s>>=)
if (s&){if (last) return false;else last=;}
else last=;
return true;
}
void prepare(){
m=(int)ceil((log(n)/log()));
for (int i=;i<(<<m);i++) if (check(i)) sta[++cnt]=i;
}
int64 calc(int st){
memset(list,,sizeof(list));
int lim,dep,last; list[]=st,bo[st]=;
for (lim=;1LL*list[lim-]*<=n;lim++) list[lim]=list[lim-]*,bo[list[lim]]=;
memset(f,,sizeof(f));
for (int i=;i<=cnt;i++){
int s1=sta[i];
if (s1>=(<<lim)) break;
f[][s1]=;
}
last=lim;
for (lim=;1LL*list[lim]*<=n&&list[lim];lim++) list[lim]*=,bo[list[lim]]=;
for (dep=;lim;){
dep++;
for (int i=;i<=cnt;i++){
int s1=sta[i];
if (s1>=(<<last)) break;
for (int j=;j<=cnt;j++){
int s2=sta[j];
if (s2>=(<<lim)) break;
if (s1&s2) continue;
f[dep][s2]+=f[dep-][s1],f[dep][s2]%=mod;
}
}
last=lim;
for (lim=;1LL*list[lim]*<=n&&list[lim];lim++) list[lim]*=,bo[list[lim]]=;
}
int64 ans=;
for (int i=;i<(<<last);i++) ans+=f[dep][i],ans%=mod;
return ans;
}
int main(){
read(n),prepare(),ans=;
for (int i=;i<=n;i++) if (!bo[i]) ans=ans*calc(i)%mod;
printf("%lld\n",ans);
return ;
}
bzoj2734: [HNOI2012]集合选数的更多相关文章
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- [HNOI2012]集合选数 BZOJ2734
分析: 构造法...每次找到一个没有被选过的数,用这个数推出一个表格,之后在表格上跑状压DP,时间复杂度O(n) 附上代码: #include <cstdio> #include < ...
- bzoj2734:[HNOI2012]集合选数(状压DP)
菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...
随机推荐
- 又是一道水题 hdu背包
Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负) ...
- Centos6.5 nginx+nginx-rtmp配置流媒体服务器
之前使用命令方式安装nginx并配置了反向代理,由于想做一个视频直播的小项目,查了流媒体服务器的方案,发现nginx有相关模块,于是开始搞起. nginx-rtmp模块需要在nginx编译时,以模块方 ...
- 了解各种AA特性
AA(Anti-Aliasing)抗锯齿想必不少玩家在游戏画质设定中经常会遇到,说通俗一点AA抗锯齿的作用:将图像边缘及其两侧的像素颜色进行混 合,然后用新生成的具有混合特性的点来替换原来位置上... ...
- 【android】ImageView的src和background的区别以及两者的妙用
一.ImageView中XML属性src和background的区别: background会根据ImageView组件给定的长宽进行拉伸,而src就存放的是原图的大小,不会进行拉伸 .src是图片内 ...
- 未能从程序集“WindowsBase, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35“ 中加载“System.Windows.SplashSceen”
通过添加windowsbase.dll,可以解决这个问题,你可以在自己的电脑上找到这个文件,地址是:C:\Program Files\Reference Assemblies\Microsoft\Fr ...
- JWS-webservice 与Axis2-webservice的高速实现
在详细介绍这两种框架下的webservice之前,先跟大家交流一下SOA认识,也就是面向服务的体系结构.SOA所要解决的主要问题是在现有基础环境的前提下,通过对现有应用程序和基础结构进行又一次的组合以 ...
- 使用php glob函数查找文件,遍历文件目录(转)
函数说明:array glob ( string $pattern [, int $flags ] )功能:寻找与模式匹配的文件路径,返回包含匹配文件(目录)的数组(注:被检查的文件必须是服务器系统的 ...
- 2 - SQL Server 2008 之 使用SQL语句为现有表添加约束条件
上一节讲的是直接在创建表的时候添加条件约束,但是有时候是在表格创建完毕之后,再添加条件约束的,那么这个又该如何实现? 其实,跟上一节所写的SQL代码,很多是相同的,只是使用了修改表的ALTER关键字及 ...
- Eclipse / Android : “Errors running builder 'Android Pre Compiler' on project…”
Errors occurred during the build. Errors running builder 'Android Resource Manager' on project 'hell ...
- 第五篇:python高级之面向对象高级
python高级之面向对象高级 python高级之面向对象高级 本节内容 成员修饰符 特殊成员 类与对象 异常处理 反射/自省 单例模式 1.成员修饰符 python的类中只有私有成员和公有成员两 ...