BZOJ 1492 货币兑换
Description
Input
第一行两个正整数\(N,S\),分别表示小Y 能预知的天数以及初始时拥有的钱数。 接下来\(N\)行,第\(K\)行三个实数\(A_{K},B_{K},Rate_{K}\),意义如题目中所述。
Output
只有一个实数\(MaxProfit\),表示第\(N\)天的操作结束时能够获得的最大的金钱数目。答案保留$3¥位小数。
Sample Input
3 100
1 1 1
1 2 2
2 2 3
Sample Output
225.000
HINT
测试数据设计使得精度误差不会超过\(10^{-7}\)。
对于40%的测试数据,满足\(N \le 10\);
对于60%的测试数据,满足\(N \le 1000\);
对于100%的测试数据,满足\(N \le 100000\)。
这是一道斜率优化dp的好题。他并不满足单调性,我们只能动态维护凸包。平衡树动态维护凸包并不好码,我们可以用编程复杂度较低的cdq分治。
首先确定一点:最优解一定是贪心地全部买入或卖出所得到的。
\(f_{i}\)表示第\(i\)天所能得到的最多钱数,转移:$$f_{i}=max(f_{i-1},A_{i} \times rate_{j} \frac{f_{j}}{1+rate_{j}}+B_{i} \times \frac{f_{j}}{1+rate_{j}})$$
但是对于这个式子dp是\(O(n^{2})\)的,我们可以令$$X_{i}= rate_{i} \frac{f_{i}}{1+rate_{i}},Y_{i}=\frac{f_{i}}{1+rate_{i}}$$
则dp方程就可以化简为$$f_{i}=max(f_{i-1},A_{j} \times X_{j}+B_{j} \times Y_{j})$$
看出来没,这是一个很明显的斜率优化dp的式子,但是\(X_{i}\)和\(Y_{i}\)都不单调,怎么办。
平衡树动态维护凸包,并不会。于是cdq分治的优势就体现出来了。
cdq分治:对于\(l \thicksim r\)一段,我们可以用已经算出来的\(l \thicksim mid\)一段区更新\(mid+1 \thicksim r\)一段。由于\(l \thicksim mid\)一段\(f\)已经确定,所以我们可以对之进行排序,求凸包之类的,借之更新\(mid+1 \thicksim r\)。
我们只需对于确定\(l \thicksim mid\)一段求凸包,然后用每个\(mid+1 \thicksim r\)里的元素进行二分更新\(f\)即可。时间复杂度\(O(nlog^{2}n)\)。
#include<cmath>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
#define maxn 100010
int n; double f[maxn],rate[maxn],ak[maxn],bk[maxn];
struct NODE
{
double x,y;
friend inline bool operator <(const NODE &a,const NODE &b) { return a.x < b.x; }
friend inline double operator /(const NODE &a,const NODE &b) { return a.x*b.y-a.y*b.x; }
friend inline NODE operator -(const NODE &a,const NODE &b) { return (NODE){a.x-b.x,a.y-b.y}; }
inline double alpha() { return atan2(y,x); }
}ask[maxn],ham[maxn];
double bac[maxn];
inline int find(double key,int l,int r)
{
int mid;
while (l <= r)
{
mid = (l + r) >> 1;
if (bac[mid] > key) l = mid+1;
else r = mid - 1;
}
return l;
}
inline void work(int l,int r)
{
if (l == r)
{
f[l] = max(f[l-1],f[l]);
ask[l].x = f[l]/(ak[l]*rate[l]+bk[l]);
ask[l].y = ask[l].x*rate[l];
return;
}
int mid = (l + r) >> 1;
work(l,mid);
sort(ask+l,ask+mid+1);
int m = 0;
for (int i = mid;i >= l;--i)
{
while (m > 1&&(ham[m]-ham[m-1])/(ask[i]-ham[m-1]) <= 0) --m;
ham[++m] = ask[i];
}
reverse(ham+1,ham+m+1);
for (int i = 1;i < m;++i) bac[i] = (ham[i+1]-ham[i]).alpha();
for (int i = mid+1;i <= r;++i)
{
double k = (NODE) {ak[i],-bk[i]}.alpha();
int pos = find(k,1,m-1);
f[i] = max(f[i],bk[i]*ham[pos].x+ak[i]*ham[pos].y);
}
work(mid+1,r);
}
int main()
{
freopen("1492.in","r",stdin);
freopen("1492.out","w",stdout);
scanf("%d%lf",&n,&f[0]);
for (int i = 1;i <= n;++i)
scanf("%lf %lf %lf",ak+i,bk+i,rate+i);
work(1,n);
printf("%.3lf",f[n]);
fclose(stdin); fclose(stdout);
return 0;
}
BZOJ 1492 货币兑换的更多相关文章
- BZOJ 1492 货币兑换Cash
http://www.lydsy.com/JudgeOnline/problem.php?id=1492 思路: 问题转变为维护一个凸包,每次转移都找凸包上的点,并更新凸壳 可以用splay维护,或者 ...
- BZOJ 1492 货币兑换 Cash CDQ分治
这题n2算法就是一个维护上凸包的过程. 也可以用CDQ分治做. 我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分. 好处是思路清晰,避免了凸包的插入删除,坏处是多了一个l ...
- BZOJ 1492 货币兑换 cdq分治或平衡树维护凸包
题意:链接 方法:cdq分治或平衡树维护凸包 解析: 这道题我拒绝写平衡树的题解,我仅仅想说splay不要写挂,insert边界条件不要忘.del点的时候不要脑抽d错.有想写平衡树的去看140142或 ...
- BZOJ 1492: [NOI2007]货币兑换Cash( dp + 平衡树 )
dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡 ...
- NOI 2007 货币兑换Cash (bzoj 1492) - 斜率优化 - 动态规划 - CDQ分治
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...
- bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492 [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B= ...
- ●BZOJ 1492 [NOI2007]货币兑换Cash
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1492 题解: 斜率优化DP,CDQ分治 定义$DP[i]$为第i天结束后的最大收益. 由于题 ...
- BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...
- 【BZOJ 1492】【NOI 2007】货币兑换Cash
这是道CDQ分治的例题: $O(n^2)$的DP: f [1]←S* Rate[1] / (A[1] * Rate[1] + B[1]) Ans←SFor i ← 2 to n For j ←1 to ...
随机推荐
- 在C#中使用InputBox
以前用VB编程常用InputBox,现在学了C#,竟然找不到它了--后来到网上查到了,现在贡献给大家:1.首先要添加引用Microsoft.VisualBasic2.命名空间 Using Micros ...
- Qt的皮肤设计(Style Sheet)
Qt的皮肤设计,也可以说是对Qt应用程序的界面美化,Qt使用了一种类CSS的样式规则QSS. 一.Style Sheet的应用 1.直接在程序代码中设置样式,利用setStyleSheet()方法 ...
- 第八条——覆盖equals方法时需遵守的通用约定
1)自反性 对于任何非null的引用值x,x.equals(x)必须返回true.---这一点基本上不会有啥问题 2)对称性 对于任何非null的引用值x和y,当且仅当x.equals(y)为true ...
- CGLIB学习笔记
0 概述 CGLIB基于ASM实现.提供比反射更为强大的动态特性.使用CGLIB可以非常方便的实现的动态代理. 0.1 CGLIB包结构 net.sf.cglib.core 底层字节码处理类. ...
- ASP.NET-FineUI开发实践-16(一)
还是基础的东西,grid全选没有事件,给加个事件,除了需要会复制粘贴外还要点推荐那! 第一步:原理 事件被触发,方法被实现. 对于全选事件,被触发有两种方式可写,一个是通过原生extjs方式触发 ...
- js的MVC结构设计
基于jquery的Deferred,设计出如下MVC架构. 模型model interface.js interface: function(userid){ var dtd = $.Deferred ...
- foreach遍历----for(object o: list)
备注,两种写法是一样的.
- U3D 内置对象
在U3D里面提供了一个Time对象: void OnGUI(){ Debug.Log("########################"); GUILayout.Label (& ...
- Java-Android 之输入提示框
Android的文本提示框有两种方式: main.xml文件 <?xml version="1.0" encoding="utf-8"?> < ...
- MVC ViewEngine视图引擎解读及autofac的IOC运用实践
MVC 三大特色 Model.View.Control ,这次咱们讲视图引擎ViewEngine 1.首先看看IViewEngine接口的定义 namespace System.Web.Mvc { ...

