The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 710    Accepted Submission(s): 290

Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 
Input
The rst line has a number T (T <= 10) , indicating the number of test cases.

For each test case, first line has a single number N (N <= 300), which is the number of points.

For next N lines, each come with four integers X
i, Y
i, VX
i and VY
i (-10
6 <= X
i, Y
i <= 10
6, -10
2 <= VX
i , VY
i <= 10
2), (X
i, Y
i) is the position of the i
th point, and (VX
i , VY
i) is its speed with direction. That is to say, after 1 second, this point will move to (X
i + VX
i , Y
i + VY
i).
 
Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 
Sample Input
2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0
 
Sample Output
Case #1: 1.00 0.00
Case #2: 1.00 1.00
 
Source
 
Recommend
zhuyuanchen520
 


题目大意:有n个点,这些点有各自的起始坐标和x,y方向的速度,问你在什么时刻,这些点两两之间的最大距离最小,求出时刻与距离。比赛的时候写的暴力枚举,觉得三分应该靠不住,单调性并不一定是一个抛物线的样子。最大值应该是连续的,而且是个开口向上的抛物线的单调关系。某一时刻有了最小的距离之后,会越走越远。由于求最小值,会想到三分。


题目地址:The Moving Points


三分AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std;
double eps=1e-6;
int n; //点的个数
struct mq
{
double x;
double y;
double vx;
double vy;
};
mq node[305]; double dis(mq a,mq b,double t)
{
return sqrt((a.x+a.vx*t-b.x-b.vx*t)*(a.x+a.vx*t-b.x-b.vx*t)+(a.y+a.vy*t-b.y-b.vy*t)*(a.y+a.vy*t-b.y-b.vy*t));
} double cal(double t)
{
int i,j;
double ans=0;
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
ans=max(ans,dis(node[i],node[j],t));
return ans;
} int main()
{
int tes,i;
scanf("%d",&tes);
int cas=0;
while(tes--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%lf%lf%lf%lf",&node[i].x,&node[i].y,&node[i].vx,&node[i].vy); double left,right,mid,mimid;
left=0,right=10000000;
while(right-left>eps)
{
mid=(left+right)/2.0,mimid=(right+mid)/2.0;
if(cal(mid)<cal(mimid))
right=mimid;
else
left=mid;
} printf("Case #%d: %.2f %.2f\n",++cas,mid,cal(mid));
} return 0;
} /*
45
2
0 0 1 0
2 0 -1 0
2
-1000000 0 1 0
1000000 0 -1 0
2
1000000 0 0 0
-1000000 0 0 0
2
1000000 1000000 0 0
-1000000 -1000000 0 0
3
2 2 0 0
1 1 0 0
4 4 0 0
*/

当时比赛时写的是暴力枚举的方法,也可以过的,不过精度没有卡到位,每次分成10份找最小的,慢慢等分,跟三分的思想差不多。
暴力AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std;
double eps=1e-6;
int n;
struct mq
{
double x;
double y;
double vx;
double vy;
};
mq node[305];
double ps,pt; void cal()
{
double fent=10000000;
double l=0,r=fent,t;
int i,j;
while(fent>eps)
{
for(t=l; t<=r; t+=fent)
{
double tmp=0;
for(i=0; i<n; i++)
for(j=i+1; j<n; j++)
{
double a,b,c,d;
a=node[i].x+node[i].vx*t;
b=node[i].y+node[i].vy*t;
c=node[j].x+node[j].vx*t;
d=node[j].y+node[j].vy*t;
double sq=sqrt((a-c)*(a-c)+(b-d)*(b-d));
if(sq>tmp)
tmp=sq;
}
if(tmp<ps)
{
ps=tmp;
pt=t;
}
}
if(pt<fent)
{
l=0,r=fent;
}
else
{
l=pt-fent,r=pt+fent;
}
fent=fent/10.0;
}
}
int main()
{
int tes,i;
scanf("%d",&tes);
int cas=0;
while(tes--)
{
scanf("%d",&n);
for(i=0; i<n; i++)
scanf("%lf%lf%lf%lf",&node[i].x,&node[i].y,&node[i].vx,&node[i].vy); ps=100000000.0;
cal();
printf("Case #%d: %.2f %.2f\n",++cas,pt,ps);
}
return 0;
} /*
45
2
0 0 1 0
2 0 -1 0
2
-1000000 0 1 0
1000000 0 -1 0
2
1000000 0 0 0
-1000000 0 0 0
2
1000000 1000000 0 0
-1000000 -1000000 0 0
3
2 2 0 0
1 1 0 0
4 4 0 0
*/


HDU 4717The Moving Points warmup2 1002题(三分)的更多相关文章

  1. hdu 4717 The Moving Points(第一个三分题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 [题意]: 给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小 ...

  2. HDU 4717 The Moving Points (三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. HDUOJ---The Moving Points

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDOJ 4717 The Moving Points

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. HDU-4717 The Moving Points(凸函数求极值)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)

    HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...

  7. HDU 2802 F(N)(简单题,找循环解)

    题目链接 F(N) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. The Moving Points hdu4717

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

随机推荐

  1. linux innode图解2

    http://www.opsers.org/linux-home/base/the-knowledge-that-one-day-learn-linux-file-system.html 文件系统是操 ...

  2. MySQL Error Handling in Stored Procedures---转载

    This tutorial shows you how to use MySQL handler to handle exceptions or errors encountered in store ...

  3. thinkphp实现短信验证注册

    前言 注册时经常需要用到短信验证码,本文记录一下思路和具体实现. 短信验证平台使用云片,短信验证码的生成使用thinkphp. 思路 1.用户输入手机号,请求获取短信验证码. 2.thinkphp生成 ...

  4. PhalGo-介绍

    PhalGo-介绍 phalgo是一个Go语言的一体化开发框架,主要用于API开发应为使用ECHO框架作为http服务web程序一样可以使用,牛顿曾经说过"如果我比别人看得远,那是因为我站在 ...

  5. try、catch、finally与return

    1 try catch finally语句基础知识 finally一定会被执行. try块发生异常才会执行catch块. 如果finally块中抛出异常,则整个try.catch.finally块中抛 ...

  6. HDU 4296 Buildings(贪心)

    题意: 给定n个建筑物,每个建筑物都有两个属性w, s,每个建筑物都有一个PDV = (Σw j)-s i .意思就是它上面的所有的w相加减去它的s,让求怎么放置这个建筑物使得每个建筑物当中PDV最大 ...

  7. CakePHP的文章分类的功能实现

    前些天实现了[微个人.大家园]的文章文类功能.现在回忆一下,是如何完成的吧. 具体的操作步骤如下: 1.在文章posts表里添加一个列,category_id. 2.在数据库中添加一个数据表,cate ...

  8. gulp的常用api

    gulp是什么? http://gulpjs.com/ 相信你会明白的! 与著名的构建工具grunt相比,有什么优势呢? 易于使用,代码优于配置 高效,不会产生过多的中间文件,减少I/O压力 易于学习 ...

  9. jdbc - Insert 'Date' value in PreparedStatement

    “preparedStatement.setDate()”方法接受的是 'java.sql.Date' 类型的参数,而我们一般格式化日期所使用的是'java.util.Date'中的'SimpleDa ...

  10. metalink下载补丁包

    以下截图 截取自 某 升级包中携带的 readme文档 把以上图片转换为 文字 Download and Install Patch Updates Refer to the My Oracle Su ...