http://acm.hdu.edu.cn/showproblem.php?pid=3551

题意:给出一个图,还有一个子图的度数,求有没有办法通过删边使得原图的度数变成那个子图的度数?

思路:我们考虑把每个点拆成du[i]-d[i]个点,代表要删去的度数,然后对于每条边,我们建立两个点eu,ev,eu与ev连边,如果这条边连接了i,j两个点,那么所有的i的点向eu连边,所有的j向ev连边,如果有完美匹配(就是所有点都有匹配)那么有解。

至于为什么:如果eu和ev是匹配边,代表这条边不删,因为这条边的两侧,也就是连接的两个点都有其他的匹配了,那么这条边就不用删。

如果这条边不是匹配边,那么说明i和eu匹配了,j和ev匹配了,这条边代表删掉了,而i和j的度数也-1了

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
struct edge{
int u,v;
}e[];
int n,m,p[],q[];
int match[],newbase;
int inqueue[],inpath[],G[][],inblossom[],father[];
int du[],d[],c[],base[],start,finish,head,tail;
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
int lca(int u,int v){
memset(inpath,,sizeof inpath);
while (){
u=base[u];
inpath[u]=;
if (!match[u]) break;
u=father[match[u]];
}
while (){
v=base[v];
if (inpath[v]) break;
v=father[match[v]];
}
return v;
}
void reset(int u){
while (u!=newbase){
int v=match[u];
inblossom[base[v]]=inblossom[base[u]]=;
u=father[v];
if (base[u]!=newbase) father[u]=v;
}
}
void blossomcontract(int u,int v){
newbase=lca(u,v);
memset(inblossom,,sizeof inblossom);
reset(u);
reset(v);
if (base[u]!=newbase) father[u]=v;
if (base[v]!=newbase) father[v]=u;
for (int i=;i<=n;i++)
if (inblossom[base[i]]){
base[i]=newbase;
if (!inqueue[i]) c[++tail]=i,inqueue[i]=;
}
}
void findaugmentingpath(){
memset(inqueue,,sizeof inqueue);
memset(father,,sizeof father);
for (int i=;i<=n;i++) base[i]=i;
head=;tail=;c[]=start;inqueue[start]=;
finish=;
while (head<=tail){
int u=c[head++];
for (int v=;v<=n;v++)
if (G[u][v]&&base[u]!=base[v]&&match[v]!=u){
if (v==start||(match[v]>)&&(father[match[v]]>)){
blossomcontract(u,v);
}else
if (father[v]==){
father[v]=u;
if (match[v]){
c[++tail]=match[v];inqueue[match[v]]=;
}else{
finish=v;
return;
}
}
}
}
}
void augmentpath(){
int u,v,w;
u=finish;
while (u>){
v=father[u];
w=match[v];
match[u]=v;
match[v]=u;
u=w;
}
}
bool solve(){
int res=;
memset(match,,sizeof match);
for (int i=;i<=n;i++)
if (!match[i]){
start=i;
findaugmentingpath();
if (finish) augmentpath(),res++;
}
for (int i=;i<=n;i++)
if (!match[i]) return ;
return ;
}
bool build(){
memset(G,,sizeof G);
int cnt=;
for (int i=;i<=n;i++)
if (du[i]>d[i]) return ;
memset(p,,sizeof p);
for (int i=;i<=m;i++){
if (!p[e[i].u]){
p[e[i].u]=++cnt;
q[e[i].u]=cnt+d[e[i].u]-du[e[i].u]-;
cnt=cnt+d[e[i].u]-du[e[i].u]-;
}
if (!p[e[i].v]){
p[e[i].v]=++cnt;
q[e[i].v]=cnt+d[e[i].v]-du[e[i].v]-;
cnt=cnt+d[e[i].v]-du[e[i].v]-;
}
int k=cnt+;cnt+=;
G[k][k-]=G[k-][k]=;
for (int j=p[e[i].u];j<=q[e[i].u];j++) G[j][k-]=G[k-][j]=;
for (int j=p[e[i].v];j<=q[e[i].v];j++) G[j][k]=G[k][j]=;
}
n=cnt;
return ;
}
int main(){
int Tcase=;
int T=read();
while (T--){
n=read();m=read();
printf("Case %d: ",++Tcase);
memset(d,,sizeof d);
for (int i=;i<=m;i++){
e[i].u=read();e[i].v=read();
d[e[i].u]++;d[e[i].v]++;
}
for (int i=;i<=n;i++) du[i]=read();
if (build()&&solve()){
printf("YES\n");
}else{
printf("NO\n");
}
}
return ;
}

HDU 3551 Hard Problem的更多相关文章

  1. HDU 3549 Flow Problem(最大流)

    HDU 3549 Flow Problem(最大流) Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...

  2. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

  3. HDU 3374 String Problem (KMP+最大最小表示)

    HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  4. hdu 5105 Math Problem(数学)

    pid=5105" target="_blank" style="">题目链接:hdu 5105 Math Problem 题目大意:给定a.b ...

  5. Hdu 5445 Food Problem (2015长春网络赛 ACM/ICPC Asia Regional Changchun Online)

    题目链接: Hdu  5445 Food Problem 题目描述: 有n种甜点,每种都有三个属性(能量,空间,数目),有m辆卡车,每种都有是三个属性(空间,花费,数目).问至少运输p能量的甜点,花费 ...

  6. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  7. HDU 1022 Train Problem I

    A - Train Problem I Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  8. HDU 3374 String Problem(KMP+最大/最小表示)

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. hdu 3549 Flow Problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Description Network flow is a well- ...

随机推荐

  1. 关于openoffice英文乱码的问题

    首先选中乱码的部分,然后在右边的侧栏中看到其字体,尝试改变它的字体,看会不会显示正常,如果可以,先记住这两种字体.然后:    工具->选项->字体        然后在使用替换表打上勾, ...

  2. typedef struct

    突然忘了这玩意儿了..今天就来搞一发 typedef是类型定义的意思.typedef struct 是为了使用这个结构体方便.具体区别在于:若struct node {}这样来定义结构体的话.在申请n ...

  3. [转] 多线程下变量-gcc原子操作 __sync_fetch_and_add等

    http://blog.sina.com.cn/s/blog_6f5b220601013zw3.html 非常好的原子操作,不用加锁:__sync_fetch_and_add GCC 提供的原子操作 ...

  4. 对于android拦截短信的一些疑问

    最近折腾android4.4短信拦截的问题,要求在app上收到短信的时候弹出提示,并显示的功能. 然后找到了使用broadcastreceiver和contentprovider两种方法,那么问题来了 ...

  5. 关于 rem 作为单位设置大小

    rem是相对长度单位.相对于根元素(即html元素)font-size计算值的倍数htm{font-size: 62.5%;}根元素(html)先设置一个font-size,一般情况下为了容易计算re ...

  6. C#简单邮件发送

    System.Net.Mail.MailMessage message = new System.Net.Mail.MailMessage(); message.From = new System.N ...

  7. 移动页面缩放方法之(一)控制meta法

    <!DOCTYPE HTML> <html lang="zh-cn"> <head> <meta http-equiv="Con ...

  8. css.day03

    css的分类(位置): css层叠样式表 1.内嵌 样式表 2.行内样式表 3. 外连 css选择器分类 基础选择器 标签 id选择器 类选择器 复合选择器 交集选择器(标签指定式)  span.on ...

  9. My.Ioc 代码示例——属性和方法注入

    在 My.Ioc 中,我们可以指定让容器在构建好对象实例之后,自动为我们调用对象的公共方法或是为对象的公共属性赋值.在解析对象实例时,容器将根据我们在注册对象时指定的方法调用或属性赋值的先后顺序,调用 ...

  10. web.xml配置文件中<async-supported>true</async-supported>报错的解决方案

    为什么用到这个: ssh集成了cxf,当登录系统后,发现系统报错,控制台不断输出下面信息: 2016-05-05 11:05:06 - [http-bio-8080-exec-4] - WARN - ...