【题目描述】

RHL最近迷上一个小游戏:Flip it。游戏的规则很简单,在一个N*M的格子上,有一些格子是黑色,有一些是白色。每选择一个格子按一次,格子以及周围边相邻的格子都会翻转颜色(边相邻指至少与该格子有一条公共边的格子),黑变白,白变黑。

RHL希望把所有格子都变成白色的。不幸的是,有一些格子坏掉了,无法被按下。这时,它可以完成游戏吗?

【输入格式】

第一行一个整数T,表示T组数据。

每组数据开始于三个整数n,m,k,分别表示格子的高度和宽度、坏掉格子的个数。接下来的n行,每行一个长度m的字符串,表示格子状态为’B’或‘W’。最后k行,每行两个整数Xi,Yi(1≤Xi≤n,1≤Yi≤m),表示坏掉的格子。

【输出格式】

对于每组数据,先输出一行Case #i: (1≤i≤T)

如果可以成功,输出YES,否则输出NO。

【样例输入】

2

3 3 0

WBW

BBB

WBW

3 3 2

WBW

BBB

WBW

2 2

3 2

【样例输出】

Case #1:

YES

Case #2:

NO

【数据范围】

30%,n,m,k<=10

100%,n,m,k<=256,T<=10

http://www.cnblogs.com/chenyushuo/p/4685182.html

和这个类似的设个xor方程组,对于不能按的方块,直接将它定为0即可

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 260
using namespace std;
char ch,s[maxn];
int T,n,m,N,M,k,x,y;
unsigned int c[maxn][maxn][maxn>>],a[maxn<<][maxn>>];
bool col[maxn][maxn],ok,d[maxn][maxn],b[maxn<<];
inline void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
bool gauss(){
int i,j,k,p,q;
for (i=,k=;i<N;i++){
for (p=(<<(i&)),j=k;j<=M&&!(a[j][i>>]&p);j++);
if (j<=M){
for (q=(i>>);q<=((N-)>>);q++) swap(a[k][q],a[j][q]);
swap(b[k],b[j]);
for (j=j+;j<=M;j++)
if (a[j][i>>]&p){
for (q=(i>>);q<=((N-)>>);q++) a[j][q]^=a[k][q];
b[j]^=b[k];
}
k++;
}
}
for (;k<=M;k++) if (b[k]) return false;
return true;
}
int main(){
read(T);
for (int t=;t<=T;t++){
read(m),read(n),read(k),N=n,M=n;
for (int i=;i<=m;i++){
scanf("%s",s+);
for (int j=;j<=n;j++) col[i][j]=(s[j]=='B');
}
for (int i=;i<=n;i++) c[][i][(i-)>>]=(<<((i-)&));
for (int i=;i<=m;i++)
for (int j=;j<=n;j++){
for (int k=;k<=((n-)>>);k++)
c[i][j][k]=c[i-][j-][k]^c[i-][j][k]^c[i-][j+][k]^c[i-][j][k];
d[i][j]=d[i-][j-]^d[i-][j]^d[i-][j+]^d[i-][j]^col[i-][j];
}
for (int i=;i<=n;i++){
for (int j=;j<=((n-)>>);j++)
a[i][j]=c[m][i][j]^c[m][i-][j]^c[m][i+][j]^c[m-][i][j];
b[i]=col[m][i]^d[m][i-]^d[m][i]^d[m][i+]^d[m-][i];
}
while (k--){
read(x),read(y),++M;
for (int i=;i<=((n-)>>);i++) a[M][i]=c[x][y][i];
b[M]=d[x][y];
}
printf("Case #%d:\n",t);
if (gauss()) puts("YES");
else puts("NO");
}
return ;
}

bzoj4171 or 省队集训day3 chess: Rhl的游戏的更多相关文章

  1. 省队集训Day3 light

    [问题描述] “若是万一琪露诺(俗称 rhl)进行攻击,什么都好,冷静地回答她的问题来吸引她.对方表现出兴趣的话,那就慢慢地反问.在她考虑答案的时候,趁机逃吧.就算是很简单的问题,她一定也答不上来.” ...

  2. 省队集训Day3 tree

    [题目描述] RHL 有一天看到 lmc 在玩一个游戏. “愚蠢的人类哟,what are you doing”,RHL 说. “我在玩一个游戏.现在这里有一个有 n 个结点的有根树,其中有 m 个叶 ...

  3. FJ省队集训DAY3 T2

    思路:如果一个DAG要的路径上只要一条边去切掉,那么要怎么求?很容易就想到最小割,但是如果直接做最小割会走出重复的部分,那我们就这样:反向边设为inf,这样最小割的时候就不会割到了,判断无解我们直接用 ...

  4. FJ省队集训DAY3 T1

    思路:我们考虑如果取掉一个部分,那么能影响到最优解的只有离它最近的那两个部分. 因此我们考虑堆维护最小的部分,离散化离散掉区间,然后用线段树维护区间有没有雪,最后用平衡树在线段的左右端点上面维护最小的 ...

  5. 省队集训 Day3 吴清华

    [题目大意] 给网格图,共有$n * n$个关键节点,横向.纵向距离均为$d$,那么网格总长度和宽度均为$(n+1) * d + 1$,最外围一圈除了四角是终止节点.要求每个关键节点都要通过线连向终止 ...

  6. 省队集训 Day3 陈姚班

    [题目大意] 给一张网格图,上往下有流量限制,下往上没有,左往右有流量限制. $n * m \leq 2.5 * 10^6$ [题解] 考场直接上最大流,50分.竟然傻逼没看出狼抓兔子. 平面图转对偶 ...

  7. 省队集训 Day3 杨北大

    [题目大意] 给出平面上$n$个点$(x_i, y_i)$,请选择一个不在这$n$个点之内的点$(X, Y)$,定义$(X, Y)$的价值为往上下左右四个方向射出去直线,经过$n$个点中的数量的最小值 ...

  8. JS省队集训记

    不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...

  9. HN2018省队集训

    HN2018省队集训 Day1 今天的题目来自于雅礼的高二学长\(dy0607\). 压缩包下载 密码: 27n7 流水账 震惊!穿着该校校服竟然在四大名校畅通无阻?霸主地位已定? \(7:10\)从 ...

随机推荐

  1. 《A First Course in Probability》-chaper8-极限定理-切比雪夫不等式

    基于对概率问题的抽象化,通过期望.方差.随机变量X及其概率,我们想要通过几个量推出另外几个量的特征,笼统的来说,极限定理起到的作用便在于此 切比雪夫不等式: 在证明切比雪夫不等式之前,我们先要完成对马 ...

  2. Linux内存寻址之分段机制

    前言 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识. ...

  3. Http报文 状态码

    一.HTTP报文 1.HTTP报文介绍 HTTP报文:用于HTTP协议交互的信息. HTTP报文由报文头部和报文主体(非必须)构成,中间由空行来分隔. 1.1 请求报文:客户端发起的报文. 1).报文 ...

  4. OPENCV第一篇

    了解过之前老版本OpenCV的童鞋们都应该清楚,对于OpenCV1.0时代的基于 C 语言接口而建的图像存储格式IplImage*,如果在退出前忘记release掉的话,就会照成内存泄露.而且用起来超 ...

  5. setTimeout的作用以及setTimeout延时0毫秒的作用

    以下代码输出的顺序是? console.log(1); setTimeout(function(){ console.log(2); }, 0); setTimeout(function(){ con ...

  6. Android 省市县 三级联动(android-wheel的使用)[转]

    转载:http://blog.csdn.net/lmj623565791/article/details/23382805 今天没事跟群里面侃大山,有个哥们说道Android Wheel这个控件,以为 ...

  7. 【技术文档】《算法设计与分析导论》R.C.T.Lee等·第4章 分治策略

    分治策略有一种“大事化小,小事化了”的境界,它的思想是将原问题分解成两个子问题,两个子问题的性质和原问题相同,因此这两个子问题可以再用分治策略求解,最终将两个子问题的解合并成原问题的解.有时,我们会有 ...

  8. win7方面API學習

    Getting Applicateion Data Folder Paths Win32 #include <shlobj.h> //link with shell32.lib PWSTR ...

  9. [PWA] 9. Service worker registerion && service work's props, methods and listeners

    In some rare cases, you need to ask user to refresh the browsser to update the version. Maybe becaus ...

  10. 深入懂得android view 生命周期

    作为自定义 view 的基础,如果不了解android  view 的生命周期 , 那么你将会在后期的维护中发现这样那样的问题 ....... 做过一段时间android 开发的同学都知道,一般 on ...