bzoj4171 or 省队集训day3 chess: Rhl的游戏
【题目描述】
RHL最近迷上一个小游戏:Flip it。游戏的规则很简单,在一个N*M的格子上,有一些格子是黑色,有一些是白色。每选择一个格子按一次,格子以及周围边相邻的格子都会翻转颜色(边相邻指至少与该格子有一条公共边的格子),黑变白,白变黑。
RHL希望把所有格子都变成白色的。不幸的是,有一些格子坏掉了,无法被按下。这时,它可以完成游戏吗?
【输入格式】
第一行一个整数T,表示T组数据。
每组数据开始于三个整数n,m,k,分别表示格子的高度和宽度、坏掉格子的个数。接下来的n行,每行一个长度m的字符串,表示格子状态为’B’或‘W’。最后k行,每行两个整数Xi,Yi(1≤Xi≤n,1≤Yi≤m),表示坏掉的格子。
【输出格式】
对于每组数据,先输出一行Case #i: (1≤i≤T)
如果可以成功,输出YES,否则输出NO。
【样例输入】
2
3 3 0
WBW
BBB
WBW
3 3 2
WBW
BBB
WBW
2 2
3 2
【样例输出】
Case #1:
YES
Case #2:
NO
【数据范围】
30%,n,m,k<=10
100%,n,m,k<=256,T<=10
http://www.cnblogs.com/chenyushuo/p/4685182.html
和这个类似的设个xor方程组,对于不能按的方块,直接将它定为0即可
code:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 260
using namespace std;
char ch,s[maxn];
int T,n,m,N,M,k,x,y;
unsigned int c[maxn][maxn][maxn>>],a[maxn<<][maxn>>];
bool col[maxn][maxn],ok,d[maxn][maxn],b[maxn<<];
inline void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
bool gauss(){
int i,j,k,p,q;
for (i=,k=;i<N;i++){
for (p=(<<(i&)),j=k;j<=M&&!(a[j][i>>]&p);j++);
if (j<=M){
for (q=(i>>);q<=((N-)>>);q++) swap(a[k][q],a[j][q]);
swap(b[k],b[j]);
for (j=j+;j<=M;j++)
if (a[j][i>>]&p){
for (q=(i>>);q<=((N-)>>);q++) a[j][q]^=a[k][q];
b[j]^=b[k];
}
k++;
}
}
for (;k<=M;k++) if (b[k]) return false;
return true;
}
int main(){
read(T);
for (int t=;t<=T;t++){
read(m),read(n),read(k),N=n,M=n;
for (int i=;i<=m;i++){
scanf("%s",s+);
for (int j=;j<=n;j++) col[i][j]=(s[j]=='B');
}
for (int i=;i<=n;i++) c[][i][(i-)>>]=(<<((i-)&));
for (int i=;i<=m;i++)
for (int j=;j<=n;j++){
for (int k=;k<=((n-)>>);k++)
c[i][j][k]=c[i-][j-][k]^c[i-][j][k]^c[i-][j+][k]^c[i-][j][k];
d[i][j]=d[i-][j-]^d[i-][j]^d[i-][j+]^d[i-][j]^col[i-][j];
}
for (int i=;i<=n;i++){
for (int j=;j<=((n-)>>);j++)
a[i][j]=c[m][i][j]^c[m][i-][j]^c[m][i+][j]^c[m-][i][j];
b[i]=col[m][i]^d[m][i-]^d[m][i]^d[m][i+]^d[m-][i];
}
while (k--){
read(x),read(y),++M;
for (int i=;i<=((n-)>>);i++) a[M][i]=c[x][y][i];
b[M]=d[x][y];
}
printf("Case #%d:\n",t);
if (gauss()) puts("YES");
else puts("NO");
}
return ;
}
bzoj4171 or 省队集训day3 chess: Rhl的游戏的更多相关文章
- 省队集训Day3 light
[问题描述] “若是万一琪露诺(俗称 rhl)进行攻击,什么都好,冷静地回答她的问题来吸引她.对方表现出兴趣的话,那就慢慢地反问.在她考虑答案的时候,趁机逃吧.就算是很简单的问题,她一定也答不上来.” ...
- 省队集训Day3 tree
[题目描述] RHL 有一天看到 lmc 在玩一个游戏. “愚蠢的人类哟,what are you doing”,RHL 说. “我在玩一个游戏.现在这里有一个有 n 个结点的有根树,其中有 m 个叶 ...
- FJ省队集训DAY3 T2
思路:如果一个DAG要的路径上只要一条边去切掉,那么要怎么求?很容易就想到最小割,但是如果直接做最小割会走出重复的部分,那我们就这样:反向边设为inf,这样最小割的时候就不会割到了,判断无解我们直接用 ...
- FJ省队集训DAY3 T1
思路:我们考虑如果取掉一个部分,那么能影响到最优解的只有离它最近的那两个部分. 因此我们考虑堆维护最小的部分,离散化离散掉区间,然后用线段树维护区间有没有雪,最后用平衡树在线段的左右端点上面维护最小的 ...
- 省队集训 Day3 吴清华
[题目大意] 给网格图,共有$n * n$个关键节点,横向.纵向距离均为$d$,那么网格总长度和宽度均为$(n+1) * d + 1$,最外围一圈除了四角是终止节点.要求每个关键节点都要通过线连向终止 ...
- 省队集训 Day3 陈姚班
[题目大意] 给一张网格图,上往下有流量限制,下往上没有,左往右有流量限制. $n * m \leq 2.5 * 10^6$ [题解] 考场直接上最大流,50分.竟然傻逼没看出狼抓兔子. 平面图转对偶 ...
- 省队集训 Day3 杨北大
[题目大意] 给出平面上$n$个点$(x_i, y_i)$,请选择一个不在这$n$个点之内的点$(X, Y)$,定义$(X, Y)$的价值为往上下左右四个方向射出去直线,经过$n$个点中的数量的最小值 ...
- JS省队集训记
不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...
- HN2018省队集训
HN2018省队集训 Day1 今天的题目来自于雅礼的高二学长\(dy0607\). 压缩包下载 密码: 27n7 流水账 震惊!穿着该校校服竟然在四大名校畅通无阻?霸主地位已定? \(7:10\)从 ...
随机推荐
- 《A First Course in Probability》-chaper8-极限定理-切比雪夫不等式
基于对概率问题的抽象化,通过期望.方差.随机变量X及其概率,我们想要通过几个量推出另外几个量的特征,笼统的来说,极限定理起到的作用便在于此 切比雪夫不等式: 在证明切比雪夫不等式之前,我们先要完成对马 ...
- Linux内存寻址之分段机制
前言 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识. ...
- Http报文 状态码
一.HTTP报文 1.HTTP报文介绍 HTTP报文:用于HTTP协议交互的信息. HTTP报文由报文头部和报文主体(非必须)构成,中间由空行来分隔. 1.1 请求报文:客户端发起的报文. 1).报文 ...
- OPENCV第一篇
了解过之前老版本OpenCV的童鞋们都应该清楚,对于OpenCV1.0时代的基于 C 语言接口而建的图像存储格式IplImage*,如果在退出前忘记release掉的话,就会照成内存泄露.而且用起来超 ...
- setTimeout的作用以及setTimeout延时0毫秒的作用
以下代码输出的顺序是? console.log(1); setTimeout(function(){ console.log(2); }, 0); setTimeout(function(){ con ...
- Android 省市县 三级联动(android-wheel的使用)[转]
转载:http://blog.csdn.net/lmj623565791/article/details/23382805 今天没事跟群里面侃大山,有个哥们说道Android Wheel这个控件,以为 ...
- 【技术文档】《算法设计与分析导论》R.C.T.Lee等·第4章 分治策略
分治策略有一种“大事化小,小事化了”的境界,它的思想是将原问题分解成两个子问题,两个子问题的性质和原问题相同,因此这两个子问题可以再用分治策略求解,最终将两个子问题的解合并成原问题的解.有时,我们会有 ...
- win7方面API學習
Getting Applicateion Data Folder Paths Win32 #include <shlobj.h> //link with shell32.lib PWSTR ...
- [PWA] 9. Service worker registerion && service work's props, methods and listeners
In some rare cases, you need to ask user to refresh the browsser to update the version. Maybe becaus ...
- 深入懂得android view 生命周期
作为自定义 view 的基础,如果不了解android view 的生命周期 , 那么你将会在后期的维护中发现这样那样的问题 ....... 做过一段时间android 开发的同学都知道,一般 on ...