USACO1.5 Checker Challenge(类n皇后问题)
Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu
Description
Examine the $6\times 6$ checkerboard below and note that the six checkers are arranged on the board so that one and only one is placed in each row and each column, and there is never more than one in any diagonal. (Diagonals run from southeast to northwest and southwest to northeast and include all diagonals, not just the major two.)
1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
The solution shown above is described by the sequence 2 4 6 1 3 5, which gives the column positions of the checkers for each row from $1$ to $6$:
ROW 1 2 3 4 5 6
COLUMN 2 4 6 1 3 5
This is one solution to the checker challenge. Write a program that finds all unique solution sequences to the Checker Challenge (with ever growing values of $N$). Print the solutions using the column notation described above. Print the the first three solutions in numerical order, as if the checker positions form the digits of a large number, and then a line with the total number of solutions.
Input
A single line that contains a single integer $N$ ($6\leq N\leq 13$) that is the dimension of the $N\times N$ checkerboard.
Output
The first three lines show the first three solutions found, presented as $N$ numbers with a single space between them. The fourth line shows the total number of solutions found.
Sample Input
6
Sample Output
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
题解:雷同于八皇后问题。。只是增加了输出摆放的前三种和摆放办法
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,num,s[],vis[][];;
void search(int cur)
{
int i;
if (cur>n)
{
num++;
if (num<=)
{
for (i=; i<n; i++) printf("%d ",s[i]);
printf("%d\n",s[n]);
}
return;
}
for (i=; i<=n; i++)
{
if(!vis[][i]&&!vis[][cur+i]&&!vis[][cur-i+n])
{
s[cur]=i;
vis[][i]=vis[][cur+i]=vis[][cur-i+n]=;
search(cur+);
vis[][i]=vis[][cur+i]=vis[][cur-i+n]=;
}
}
}
int main()
{
scanf("%d",&n);
memset(s,,sizeof(s));
num=;
search();
printf("%d\n",num);
return ;
}
USACO1.5 Checker Challenge(类n皇后问题)的更多相关文章
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO 6.5 Checker Challenge
Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- Poj 1321 棋盘问题 【回溯、类N皇后】
id=1321" target="_blank">棋盘问题 Time Limit: 1000MS Memory Limit: 10000K Total Subm ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- Checker Challenge跳棋的挑战(n皇后问题)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- USACO training course Checker Challenge N皇后 /// oj10125
...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用 m+i 为从左至右第 m+i 条副对角线 vis[1] ...
- USACO 完结的一些感想
其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...
- N皇后问题2
Description Examine the checkerboard below and note that the six checkers are arranged on the board ...
随机推荐
- bzoj1251 序列终结者(Splay Tree+懒惰标记)
Description 网上有许多题,就是给定一个序列,要你支持几种操作:A.B.C.D.一看另一道题,又是一个序列 要支持几种操作:D.C.B.A.尤其是我们这里的某人,出模拟试题,居然还出了一道这 ...
- 《A First Course in Probability》-chaper8-极限定理-各类不等式
詹森不等式: 证明:
- about variables
局部变量(Local Variable),全局变量(global variable),变量共享; 静态局部变量(static local variables),函数运行结束变量值不会消失,并且其它函数 ...
- DBCP,C3P0,Tomcat_JDBC 性能及稳定性测试
1.测试环境: 硬件环境: 数据库服务器:2U*8核 8G内存 测试服务器: 2U*8核 6G内存 软件环境: jdk: 1.6.29 mysql: 5.0.77 mysql_driver: my ...
- linux网络编程学习笔记之五 -----并发机制与线程�
进程线程分配方式 简述下常见的进程和线程分配方式:(好吧,我仅仅是举几个样例作为笔记...并发的水太深了,不敢妄谈...) 1.进程线程预分配 简言之,当I/O开销大于计算开销且并发量较大时,为了节省 ...
- Ubuntu server下安装JDK和Tomcat7
服务器是Ubuntu server 12.04 LTS 64bit 所有操作假设已经有root权限,若没有需要添加sudo. 一. 安装JDK 1.去Oracle官网下载jdk-6u45-linux- ...
- android面试题及答案
JAVA 1.GC是什么? 为什么要有GC? GC是垃圾收集的意思(Gabage Collection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃, ...
- Preloading an Image with jQuery--reference
Preloading images will make your application a bit faster by making it lightweight. It is very simpl ...
- NSIndexPath初始化
在UITableView中经常用到这个类,但一直不知道怎么初始化,网上抄录的代码如下,果然好用 NSIndexPath *index = [NSIndexPath indexPathForRow:0 ...
- Android 网络框架Volley的使用
Volley简介 在平时的开发过程中,我们的应用几乎总是在和网络打交道, 在android下的网络编程一般都是基于Http协议的 ,常见的是HttpURLConnection和HttpClient 两 ...