uva 116 Unidirectional TSP

Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) – finding whether all the cities in a salesperson’s route can be visited exactly once with a specified limit on travel time – is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an tex2html_wrap_inline352 matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix “wraps” so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different tex2html_wrap_inline366 matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by tex2html_wrap_inline376 integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path’s weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6

3 4 1 2 8 6

6 1 8 2 7 4

5 9 3 9 9 5

8 4 1 3 2 6

3 7 2 8 6 4

5 6

3 4 1 2 8 6

6 1 8 2 7 4

5 9 3 9 9 5

8 4 1 3 2 6

3 7 2 1 2 3

2 2

9 10 9 10

Sample Output

1 2 3 4 4 5

16

1 2 1 5 4 5

11

1 1

19

题目大意:给出一个n*m的矩阵,要求从第一列随意一行開始。到最后一列的最小花费。(每次有三个方向能够选择)输出花费最小且字典序最小的行走路线,并输出总花费。

解题思路:从最后一列開始往前逆推。公式为dp[i][j] = min(dp[dir[k]][j + 1] + num[i][j])。

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#define N 105
using namespace std;
int num[N][N], n, m;
int dp[N][N], rec[N][N], ans, begin;
int DP() { //dp[i][j]数组记录的是 格子i j 出发,到最后一列的最小开销
for (int j = m - 1; j >= 0; j--) {
for (int i = 0; i < n; i++) {
if (j == m - 1) {
dp[i][j] = num[i][j];
}
else {
int dir[3] = {i + 1, i, i - 1};
if (dir[0] == n) dir[0] = 0;
if (dir[2] == -1) dir[2] = n - 1;
sort(dir, dir + 3);
dp[i][j] = 0xFFFFFFF;
for (int k = 0; k < 3; k++) {
int temp = dp[dir[k]][j + 1] + num[i][j];
if (temp < dp[i][j]) {
dp[i][j] = temp;
rec[i][j] = dir[k];
}
}
}
if (j == 0 && dp[i][j] < ans) {
ans = dp[i][j];
begin = i;
}
}
}
}
int main() {
while (scanf("%d %d", &n, &m) == 2) {
memset(dp, 0, sizeof(dp));
memset(rec, 0, sizeof(rec));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &num[i][j]);
}
}
ans = 0xFFFFFFF; DP(); printf("%d", begin + 1);
int i = rec[begin][0];
for (int j = 1; j < m; j++) {
printf(" %d", i + 1);
i = rec[i][j];
}
printf("\n%d\n", ans);
}
return 0;
}

uva 116 Unidirectional TSP (DP)的更多相关文章

  1. 116 - Unidirectional TSP(DP)

    多段图的最短路问题 .  运用了非常多的技巧 :如 记录字典序最小路径 . 细节參见代码: #include<bits/stdc++.h> using namespace std; con ...

  2. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

  3. UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)

    题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...

  4. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  5. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  6. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  7. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  8. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  9. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

随机推荐

  1. Zend Server安装后首次运行就出现Internal Server Error的解决(转)

    新近学习php,结果装了Zend Server上来就报错,网上找到了解决方法,照着做果然可行,转之. 刚才安装了Zend Server,安装后首次运行就爆出了一个Internal Server Err ...

  2. 《find技巧》-“linux命令五分系列”之一

    一天一个命令,做个记录, 我要成大神,哈哈哈 本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc 希望您能通过捐款的方式支持Linu ...

  3. github的package.json内容

    补充:npm的init命令生成package.json Name 必须字段. 小提示: 不要在name中包含js, node字样: 这个名字最终会是URL的一部分,命令行的参数,目录名,所以不能以点号 ...

  4. js获取屏幕(设备)宽高

    平常获取设备的宽高无非就那几 <script language="javascript"> var h = ""; h += " 网页可见 ...

  5. 【技术宅4】如何把M个苹果平均分给N个小朋友

    $apple=array('apple1','apple2','apple3','apple4','apple5','apple6','apple7','apple8','apple9','apple ...

  6. js时间戳转为日期格式

    转自:http://wyoojune.blog.163.com/blog/static/57093325201131193650725/ 这个在php+mssql(日期类型为datetime)+aja ...

  7. Android编译输出 资源指定AAPT

    BoardConfigCommon.mk # Default Command lineSEC_DEV_APP_LOCAL_AAPT_FLAGS := -c sw360dpSEC_DEV_FRAMEWO ...

  8. php编译安装configure完全配置够日常所用功能

    php编译安装configure完全配置够日常所用功能 ./configure --prefix=/usr/local/php --with-config-file-path=/usr/local/p ...

  9. Notepad++插件之FingerText

    FingerText是一个标签触发片段插件记事本.支持多个热点同时编辑,嵌套的热点,动态热点(很多不仅仅是纯文本的,可以通过命令,或触发另一个片段中的片段),热点的文本提示(而不是仅仅是$或#号)和热 ...

  10. 【算法】简单选择排序 O(n^2) 不稳定的 C语言

    简单选择排序 一.算法描述 假设序列中有N个元素: 第1趟找到第1到N个元素之间最小的一个,与第1个元素进行交换 第2趟找到第2到N个元素之间最小的一个,与第2个元素进行交换 第3趟找到第3到N个元素 ...