uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) – finding whether all the cities in a salesperson’s route can be visited exactly once with a specified limit on travel time – is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an tex2html_wrap_inline352 matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix “wraps” so that it represents a horizontal cylinder. Legal steps are illustrated below.
The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different tex2html_wrap_inline366 matrices are shown below (the only difference is the numbers in the bottom row).
The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by tex2html_wrap_inline376 integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path’s weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
题目大意:给出一个n*m的矩阵,要求从第一列随意一行開始。到最后一列的最小花费。(每次有三个方向能够选择)输出花费最小且字典序最小的行走路线,并输出总花费。
解题思路:从最后一列開始往前逆推。公式为dp[i][j] = min(dp[dir[k]][j + 1] + num[i][j])。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#define N 105
using namespace std;
int num[N][N], n, m;
int dp[N][N], rec[N][N], ans, begin;
int DP() { //dp[i][j]数组记录的是 格子i j 出发,到最后一列的最小开销
for (int j = m - 1; j >= 0; j--) {
for (int i = 0; i < n; i++) {
if (j == m - 1) {
dp[i][j] = num[i][j];
}
else {
int dir[3] = {i + 1, i, i - 1};
if (dir[0] == n) dir[0] = 0;
if (dir[2] == -1) dir[2] = n - 1;
sort(dir, dir + 3);
dp[i][j] = 0xFFFFFFF;
for (int k = 0; k < 3; k++) {
int temp = dp[dir[k]][j + 1] + num[i][j];
if (temp < dp[i][j]) {
dp[i][j] = temp;
rec[i][j] = dir[k];
}
}
}
if (j == 0 && dp[i][j] < ans) {
ans = dp[i][j];
begin = i;
}
}
}
}
int main() {
while (scanf("%d %d", &n, &m) == 2) {
memset(dp, 0, sizeof(dp));
memset(rec, 0, sizeof(rec));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &num[i][j]);
}
}
ans = 0xFFFFFFF;
DP();
printf("%d", begin + 1);
int i = rec[begin][0];
for (int j = 1; j < m; j++) {
printf(" %d", i + 1);
i = rec[i][j];
}
printf("\n%d\n", ans);
}
return 0;
}
uva 116 Unidirectional TSP (DP)的更多相关文章
- 116 - Unidirectional TSP(DP)
多段图的最短路问题 . 运用了非常多的技巧 :如 记录字典序最小路径 . 细节參见代码: #include<bits/stdc++.h> using namespace std; con ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
- UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)
题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
随机推荐
- Codeforces 474E - Pillars
一眼看上去非常像最长不下降子序列. 然后比赛的时候对每个答案长度为k的序列,维护最后一个数的最大值和最小值. 当时不知道为什么认为从长度最长倒推至前面不会太长,于是心满意足地敲了个O(n^2).结果T ...
- phpcms V9 内容模型管理(转)
转自:http://www.cnblogs.com/Braveliu/p/5102627.html [1]理解模型 模型,系统知识的抽象表示.既然抽象了,那就得脑补一下.大家都是面向对象设计的专业人员 ...
- CetnOS minimal 网络不可用
系统版本: CentOS-6.6-i386-minimal 问题说明: CentOS minimal 在安装完成之后,网络不可用,一些常见的命令报错,如: ping: unknow host xxxy ...
- java.math.BigDecimal类
BigDecimal类用于高精度计算.一般的float型和Double型数据只可以用来做科学计算或者是工程计算,由于在商业计算中,要求的数字精度比较高,所以要用到java.math.BigDecima ...
- aix7安装was7、打补丁、更改访问端口、手动启动was、配置was7、部署项目
1:准备工作 首先了解下我们下面即将用到的aix命令,以及安装包.补丁安装工具.补丁 was7的安装包以及补丁工具都是压缩包形式并且以.tar.gz结尾的 安装包在800MB左右,通常为****_w ...
- Python Tutorial 学习(二)--Using the Python Interpreter
Using the Python Interpreter 2.1. Invoking the Interpreter The Python interpreter is usually install ...
- 架设wordpress再vps上的 一些感想总结
日本vps.樱花系列 配置: 2cpu+1G内存+100G硬盘 系统 第一次我把默认的centos 给换了..原因就是,不会linux.而且我主要用.net 感觉 mono也行.但是linux不会. ...
- 10个简单实用的 jQuery 代码片段
尽管各种 JavaScirpt 框架和库层出不穷,jQuery 仍然是 Web 前端开发中最常用的工具库. 今天,向大家分享我觉得在网站开发中10个简单实用的 jQuery 代码片段. 1.平滑滚动到 ...
- JS论坛地址备忘
论坛: 百度JS吧 CSDN论坛JS版 AS天地会JS区 编程论坛JS版 开源中国JS分享 开源中国JS提问区 德问 JS堂 CSS-JS前端论坛 蓝色理想 ITEYE php100 phpspeak ...
- Pots
poj3414:http://poj.org/problem?id=3414 题意:给你两个罐子的体积,然后让你只用这两个罐子量出给定k体积的水.题解:这里可以把两个罐子看成是一个二维的图,然后体积的 ...