uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) – finding whether all the cities in a salesperson’s route can be visited exactly once with a specified limit on travel time – is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an tex2html_wrap_inline352 matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix “wraps” so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different tex2html_wrap_inline366 matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by tex2html_wrap_inline376 integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path’s weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
题目大意:给出一个n*m的矩阵,要求从第一列随意一行開始。到最后一列的最小花费。(每次有三个方向能够选择)输出花费最小且字典序最小的行走路线,并输出总花费。
解题思路:从最后一列開始往前逆推。公式为dp[i][j] = min(dp[dir[k]][j + 1] + num[i][j])。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#define N 105
using namespace std;
int num[N][N], n, m;
int dp[N][N], rec[N][N], ans, begin;
int DP() { //dp[i][j]数组记录的是 格子i j 出发,到最后一列的最小开销
for (int j = m - 1; j >= 0; j--) {
for (int i = 0; i < n; i++) {
if (j == m - 1) {
dp[i][j] = num[i][j];
}
else {
int dir[3] = {i + 1, i, i - 1};
if (dir[0] == n) dir[0] = 0;
if (dir[2] == -1) dir[2] = n - 1;
sort(dir, dir + 3);
dp[i][j] = 0xFFFFFFF;
for (int k = 0; k < 3; k++) {
int temp = dp[dir[k]][j + 1] + num[i][j];
if (temp < dp[i][j]) {
dp[i][j] = temp;
rec[i][j] = dir[k];
}
}
}
if (j == 0 && dp[i][j] < ans) {
ans = dp[i][j];
begin = i;
}
}
}
}
int main() {
while (scanf("%d %d", &n, &m) == 2) {
memset(dp, 0, sizeof(dp));
memset(rec, 0, sizeof(rec));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &num[i][j]);
}
}
ans = 0xFFFFFFF;
DP();
printf("%d", begin + 1);
int i = rec[begin][0];
for (int j = 1; j < m; j++) {
printf(" %d", i + 1);
i = rec[i][j];
}
printf("\n%d\n", ans);
}
return 0;
}
uva 116 Unidirectional TSP (DP)的更多相关文章
- 116 - Unidirectional TSP(DP)
多段图的最短路问题 . 运用了非常多的技巧 :如 记录字典序最小路径 . 细节參见代码: #include<bits/stdc++.h> using namespace std; con ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
- UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)
题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
随机推荐
- mysqldump: command not found问题解决
首先得知道mysql命令或mysqldump命令的完整路径,可以使用find命令查找除非你知道mysql安装路径可以略过这一步. find / -name mysql -print 例如我的mysql ...
- 刚接触js不久,自己写的banner幻灯片效果。
对于我这种菜鸟来讲,刚接触项目.叫我用插件,其实我说插件太臃肿不想用,倒不如说我是看不懂那些插件...- -(更愿意自己写点看得懂的代码,顺便也是个学习的过程) 所以自己花了些时间,自己来写了个dem ...
- ComboBoxEdit
1. 如何使其不可编辑 TextEditStyle 设置为:DisableTextEditor 2. 如何设置鼠标为手形 Cursor 设置为:Hand
- HTML5有语义的内联元素详解
HTML5有语义的内联元素详解 time标签 time 元素表示一个时间值,比如 5:35 P.M., EST, April 23, 2007.例如: Example Source Code:< ...
- QTP的DataTable操作整理(注---不知转载多少遍)
返回值:数字 示例: 以下示例使用 GetRowCount 方法查找 MySheet 运行时数据表中最长的列中的总行数,并将其写入报告. rowcount = DataTable.GetSheet(& ...
- 快速傅里叶变换(FFT)
一.FFT的意义 DFT虽然实现了FT的计算机计算,但是计算量大,不适合实时的数字信号处理.FFT算法的出现,使DFT的计算效率更高,速度更快. 二.FFT与DFT的关系 从FT到DFT经过了数字角频 ...
- hdu3652B-number
Problem Description A wqb-number, or B-number for short, is a non-negative integer whose decimal for ...
- objective-c 错题
//1, NSString *name = [[NSString alloc]initWithString:@"张三"]; NSLog(@"%d",[name ...
- jQuery取CSS的HEX(16位)颜色值
//IE10以上版本.CHROME.FIREFOX中GRB颜色转HEX颜色值 $.fn.getBackgroundColor = function() { var rgb = $(this).css( ...
- 【Web Service】WSDL文档
WSDL文档仅仅是一个简单的XML文档. 它包含一系列描述某个web service的定义. WSDL WSDL 是基于 XML 的语言,用于描述 Web services 以及如何访问它们. WSD ...