poj 2187 凸包加旋转卡壳算法
题目链接:http://poj.org/problem?id=2187
旋转卡壳算法:http://www.cppblog.com/staryjy/archive/2009/11/19/101412.html 或 http://cgm.cs.mcgill.ca/~orm/rotcal.frame.html
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = ;
const int maxe = ;
const int INF = 0x3f3f3f;
const double eps = 1e-;
const double PI = acos(-1.0); struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return Dot(A,A); } //距离的平方;
double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } //凸包:
/**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的
点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/ //Goal[]数组模拟栈的使用;
int ConvexHull(Point* P,int n,Point* Goal){
sort(P,P+n);
int m = unique(P,P+n) - P; //对点进行去重;
int cnt = ;
for(int i=;i<m;i++){ //求下凸包;
while(cnt> && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
int temp = cnt;
for(int i=m-;i>=;i--){ //逆序求上凸包;
while(cnt>temp && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
if(cnt > ) cnt--; //减一为了去掉首尾重复的;
return cnt;
}
//旋转卡壳可以用于求凸包的直径、宽度,两个不相交凸包间的最大距离和最小距离
//计算凸包直径,输入凸包Goal,顶点个数为n,按逆时针排列,输出直径的平方
double RotatingCalipers(Point* Goal,int n){
double ret = ;
Goal[n]=Goal[]; //补上使凸包成环;
int pv = ;
for(int i=;i<n;i++){ //枚举边Goal[i]Goal[i+1],与最远顶点Goal[pv];利用叉积求面积的方法求最大直径;;
while(fabs(Cross(Goal[i+]-Goal[pv+],Goal[i]-Goal[pv+]))>fabs(Cross(Goal[i+]-Goal[pv],Goal[i]-Goal[pv])))
pv = (pv+)%n;
ret=max(ret,max(Length(Goal[i]-Goal[pv]),Length(Goal[i+]-Goal[pv+]))); //这个地方不太好理解,就是要考虑当pv与pv+1所在直线平行于i与i+1的情况;
}
return ret;
}
/*********************************分割线******************************/ Point P[maxn],Goal[maxn];
int n; int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
cin>>n;
int cnt = n;
for(int i=;i<n;i++){
double x,y;
scanf("%lf %lf",&x,&y);
P[i] = Point(x,y);
}
cnt = ConvexHull(P,cnt,Goal);
double Maxlen = RotatingCalipers(Goal,cnt);
printf("%.f\n",Maxlen);
return ;
}
直接枚举凸包的点也可以,n偏小;
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = ;
const int maxe = ;
const int INF = 0x3f3f3f;
const double eps = 1e-;
const double PI = acos(-1.0); struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return Dot(A,A); } //距离的平方;
double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } //凸包:
/**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的
点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/ //Goal[]数组模拟栈的使用;
int ConvexHull(Point* P,int n,Point* Goal){
sort(P,P+n);
int m = unique(P,P+n) - P; //对点进行去重;
int cnt = ;
for(int i=;i<m;i++){ //求下凸包;
while(cnt> && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
int temp = cnt;
for(int i=m-;i>=;i--){ //逆序求上凸包;
while(cnt>temp && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
if(cnt > ) cnt--; //减一为了去掉首尾重复的;
return cnt;
} /*********************************分割线******************************/ Point P[maxn],Goal[maxn];
int n; int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
cin>>n;
int cnt = n;
for(int i=;i<n;i++){
double x,y;
scanf("%lf %lf",&x,&y);
P[i] = Point(x,y);
}
cnt = ConvexHull(P,cnt,Goal);
double Maxlen = ;
for(int i=;i<cnt;i++)
for(int j=i+;j<cnt;j++){
Maxlen = max(Maxlen,Length(Goal[j]-Goal[i]));
}
printf("%.f\n",Maxlen);
return ;
}
poj 2187 凸包加旋转卡壳算法的更多相关文章
- POJ 2187 /// 凸包入门 旋转卡壳
题目大意: 求最远点对距离 求凸包上的最远点对 挑战263页 #include <cstdio> #include <string.h> #include <algori ...
- 算法复习——凸包加旋转卡壳(poj2187)
题目: Description Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest ...
- poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方
旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...
- poj 2187 Beauty Contest——旋转卡壳
题目:http://poj.org/problem?id=2187 学习材料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...
- poj 2187:Beauty Contest(旋转卡壳)
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 32708 Accepted: 10156 Description Bes ...
- poj 2187 Beauty Contest —— 旋转卡壳
题目:http://poj.org/problem?id=2187 学习资料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...
- POJ 2187 Beauty Contest(凸包,旋转卡壳)
题面 Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the ...
- LA 4728 旋转卡壳算法求凸包的最大直径
#include<iostream> #include<cstdio> #include<cmath> #include<vector> #includ ...
- POJ2187 Beauty Contest (旋转卡壳算法 求直径)
POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...
随机推荐
- rdlc报表
也是第一次接触报表这个东西.现在在我理解,报表无非就是两个内容,格式和数据. 格式没有多少了解,就记录了,以后再续.数据的绑定和结果的显示是怎么实现的呢? 今天的主角就是rdlc这个文件和Report ...
- C++函数二义性问题,我怎么感觉编译器有偷懒嫌疑!!!
瞎扯一段,讲得不一定对.纯属学习! struct BB{ void a(){ cout << "bb's a()\n"; }}; struct B1 : public ...
- SGU 103.Traffic Lights(最短路)
时间: 0.50 second(s) 空间: 4096 kilobytes 输入: 标准输入 输出: 标准输出 Dingiville 城市的交通规则非常奇怪,城市公路通过路口相连,两个不同路口之间最多 ...
- SGU 123.The sum
#include <iostream> using namespace std; int f[50]={0,1,1}; int main(){ int n,s=0; cin>> ...
- mysql如何将一个表导出为excel表格
方法一:进入到mysql的控制台,输入: 1. SELECT * INTO OUTFILE ‘./test.xls‘ FROM tb1 WHERE 1 ORDER BY id DESC LIMIT ...
- iOS 视频播放横屏,隐藏状态栏
MPMoviePlayerViewController *moviePlayerViewController = [[MPMoviePlayerViewController alloc] init]; ...
- Oracle 面试宝典 - General Questions
转自 http://www.orafaq.com/wiki/Interview_Questions Tell us about yourself/ your background. What are ...
- php基础知识【oop/mvc/orm/aop】
OOP 面向对象编程是一种计算机编程架构.OOP 的一条基本原则是计算机程序是由单个能够起到子程序作用的单元或对象组合而成.OOP 达到了软件工程的三个主要目标:重用性.灵活性和扩展性.为了实现整体运 ...
- 【转】python中List的sort方法(或者sorted内建函数)的用法
原始出处:http://gaopenghigh.iteye.com/blog/1483864 python列表排序 简单记一下python中List的sort方法(或者sorted内建函数)的用法. ...
- php开发学习目录
最近有个项目需要使用php,没办法学习吧 本文不适合没有任何语言的初学者,也不适合 php熟练者.只是个人工作中需要的总结 目录 一.环境安装 1.1 apache 简介安装使用等 1.2 php 5 ...