poj 2187 凸包加旋转卡壳算法
题目链接:http://poj.org/problem?id=2187
旋转卡壳算法:http://www.cppblog.com/staryjy/archive/2009/11/19/101412.html 或 http://cgm.cs.mcgill.ca/~orm/rotcal.frame.html
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = ;
const int maxe = ;
const int INF = 0x3f3f3f;
const double eps = 1e-;
const double PI = acos(-1.0); struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return Dot(A,A); } //距离的平方;
double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } //凸包:
/**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的
点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/ //Goal[]数组模拟栈的使用;
int ConvexHull(Point* P,int n,Point* Goal){
sort(P,P+n);
int m = unique(P,P+n) - P; //对点进行去重;
int cnt = ;
for(int i=;i<m;i++){ //求下凸包;
while(cnt> && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
int temp = cnt;
for(int i=m-;i>=;i--){ //逆序求上凸包;
while(cnt>temp && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
if(cnt > ) cnt--; //减一为了去掉首尾重复的;
return cnt;
}
//旋转卡壳可以用于求凸包的直径、宽度,两个不相交凸包间的最大距离和最小距离
//计算凸包直径,输入凸包Goal,顶点个数为n,按逆时针排列,输出直径的平方
double RotatingCalipers(Point* Goal,int n){
double ret = ;
Goal[n]=Goal[]; //补上使凸包成环;
int pv = ;
for(int i=;i<n;i++){ //枚举边Goal[i]Goal[i+1],与最远顶点Goal[pv];利用叉积求面积的方法求最大直径;;
while(fabs(Cross(Goal[i+]-Goal[pv+],Goal[i]-Goal[pv+]))>fabs(Cross(Goal[i+]-Goal[pv],Goal[i]-Goal[pv])))
pv = (pv+)%n;
ret=max(ret,max(Length(Goal[i]-Goal[pv]),Length(Goal[i+]-Goal[pv+]))); //这个地方不太好理解,就是要考虑当pv与pv+1所在直线平行于i与i+1的情况;
}
return ret;
}
/*********************************分割线******************************/ Point P[maxn],Goal[maxn];
int n; int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
cin>>n;
int cnt = n;
for(int i=;i<n;i++){
double x,y;
scanf("%lf %lf",&x,&y);
P[i] = Point(x,y);
}
cnt = ConvexHull(P,cnt,Goal);
double Maxlen = RotatingCalipers(Goal,cnt);
printf("%.f\n",Maxlen);
return ;
}
直接枚举凸包的点也可以,n偏小;
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = ;
const int maxe = ;
const int INF = 0x3f3f3f;
const double eps = 1e-;
const double PI = acos(-1.0); struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return Dot(A,A); } //距离的平方;
double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } //凸包:
/**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的
点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/ //Goal[]数组模拟栈的使用;
int ConvexHull(Point* P,int n,Point* Goal){
sort(P,P+n);
int m = unique(P,P+n) - P; //对点进行去重;
int cnt = ;
for(int i=;i<m;i++){ //求下凸包;
while(cnt> && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
int temp = cnt;
for(int i=m-;i>=;i--){ //逆序求上凸包;
while(cnt>temp && dcmp(Cross(Goal[cnt-]-Goal[cnt-],P[i]-Goal[cnt-])) <= ) cnt--;
Goal[cnt++] = P[i];
}
if(cnt > ) cnt--; //减一为了去掉首尾重复的;
return cnt;
} /*********************************分割线******************************/ Point P[maxn],Goal[maxn];
int n; int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
cin>>n;
int cnt = n;
for(int i=;i<n;i++){
double x,y;
scanf("%lf %lf",&x,&y);
P[i] = Point(x,y);
}
cnt = ConvexHull(P,cnt,Goal);
double Maxlen = ;
for(int i=;i<cnt;i++)
for(int j=i+;j<cnt;j++){
Maxlen = max(Maxlen,Length(Goal[j]-Goal[i]));
}
printf("%.f\n",Maxlen);
return ;
}
poj 2187 凸包加旋转卡壳算法的更多相关文章
- POJ 2187 /// 凸包入门 旋转卡壳
题目大意: 求最远点对距离 求凸包上的最远点对 挑战263页 #include <cstdio> #include <string.h> #include <algori ...
- 算法复习——凸包加旋转卡壳(poj2187)
题目: Description Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest ...
- poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方
旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...
- poj 2187 Beauty Contest——旋转卡壳
题目:http://poj.org/problem?id=2187 学习材料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...
- poj 2187:Beauty Contest(旋转卡壳)
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 32708 Accepted: 10156 Description Bes ...
- poj 2187 Beauty Contest —— 旋转卡壳
题目:http://poj.org/problem?id=2187 学习资料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...
- POJ 2187 Beauty Contest(凸包,旋转卡壳)
题面 Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the ...
- LA 4728 旋转卡壳算法求凸包的最大直径
#include<iostream> #include<cstdio> #include<cmath> #include<vector> #includ ...
- POJ2187 Beauty Contest (旋转卡壳算法 求直径)
POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...
随机推荐
- SQL替换空格,制表符,换行符,回车符.
首先是空格的替换,很重要的有点是,要确保字段的类型,不是char或nchar等固定的类型,否则无法去掉空格. 去掉空格很简单,如下为SQL实例: --去掉 T_StuffBasic 表中FBranch ...
- C#中的Dictionary简介
简介在C#中,Dictionary提供快速的基于兼职的元素查找.当你有很多元素的时候可以使用它.它包含在System.Collections.Generic名空间中. 在使用前,你必须声明它的键类型和 ...
- 序列化- 使用BinaryFormatter进行序列化
可以使用属性(Attribute)将类的元素标为可序列化的(Serializable)和不可被序列化的(NonSerialized)..NET中有两个类实现了IFormatter借口的类中的Seria ...
- Express难点解析
app.js 应用程序入口文件1.// view engine setup 设置视图引擎app.set('views', path.join(__dirname, 'views'));//告诉expr ...
- JSP技术
1. JSP技术简介 JSP全称是Java Server Pages,它和servlet技术一样,都是SUN公司定义的一种用于开发动态web资源的技术.是sun公司定义的一种规范,JSP实际上就是Se ...
- Spring在代码中获取bean的几种方式(转:http://www.dexcoder.com/selfly/article/326)
方法一:在初始化时保存ApplicationContext对象 方法二:通过Spring提供的utils类获取ApplicationContext对象 方法三:继承自抽象类ApplicationObj ...
- Spring MVC中 controller方法返回值
1.返回ModelAndView 定义ModelAndView对象并返回,对象中可添加model数据.指定view 2.返回String 1.表示返回逻辑视图名 model对象通过 model.add ...
- 基于jQuery查找dom的多种方式性能问题
这个问题的产生由于我们前端组每个人的编码习惯的差异,最主要的还是因为代码的维护性问题.在此基础上,我对jQuery源码(1.11.3)查找dom节点相关的内容进行了仔细的查阅,虽然并不能理解的很深入 ...
- Html5的<button>标签
1.标签是双标签,其内可添加文字,图片等复杂的样式. 2.不仅可以在表单中使用,还可以在其他块元素和内联元素中使用. 3.一般在input标签内添加name属性,否则提交后不显示.
- 最大乘积(Maximum Product,UVA 11059)
Problem D - Maximum Product Time Limit: 1 second Given a sequence of integers S = {S1, S2, ..., Sn}, ...