HDU4372-Count the Buildings【第一类Stirling数】+【组合数】
<题目链接>
<转载于 >>> >
题目大意:
N座高楼,高度均不同且为1~N中的数,从前向后看能看到F个,从后向前看能看到B个,问有多少种可能的排列数。
0 < N, F, B <= 2000
解题分析:
首先我们知道一个结论:n的环排列的个数与n-1个元素的排列的个数相等,因为P(n,n)/n=(n-1)!。
可以肯定,无论从最左边还是从最右边看,最高的那个楼一定是可以看到的.
假设最高的楼的位置固定,最高楼的编号为n,那么我们为了满足条件,可以在楼n的左边分x-1组,右边分y-1组,且用每
组最高的那个元素代表这一组,那么楼n的左边,从左到右,组与组之间最高的元素一定是单调递增的,且每组中的最高元
素一定排在该组的最左边,每组中的其它元素可以任意排列(相当于这个组中所有元素的环排列)。右边反之亦然。
然后,可以这样考虑这个问题,最高的那个楼左边一定有x-1个组,右边一定有y-1个组,且每组是一个环排列,这就引出
了第一类Stirling数(
个人分成
组,每组内再按特定顺序围圈的分组方法的数目)。
我们可以先把n-1个元素分成x-1+y-1组,然后每组内部做环排列。再在所有组中选取x-1组放到楼n的左边。所以答案是
ans(n, f, b) = C[f + b - 2][f - 1] * S[n - 1][f + b - 2];
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std; #define mod 1000000007
const int maxn = + ;
LL c[maxn][maxn], s[maxn][maxn]; //第一类Stirling数s(p,k)的实际意义是:将p个物体排成k个非空循环排列的方法数
void init() { //第一类斯特灵数通项公式 : S[n][k]=(S[n-1][k-1]+(n-1)*S[n-1][k])
for(int i = ; i <= ; i++) {
s[i][] = ; s[i][i] = ;
for(int j = ; j < i; j++) {
s[i][j] = ((i-)*s[i-][j]+s[i-][j-]) % mod;
//考虑递推,把n个不同元素分成k个不同的环有两种转移。第一种,有可能是n−1个不同元素
//分成k−1个不同的环,当前的第n个独立成一个元素。第二种可能是n−1个不同元素已经分好了k个不同的环,当前这个可以加进去。
}
}
} void init2() { //初始化组合数
c[][] = ;
for(int i = ; i <= ; i++) {
c[i][] = ;
for(int j = ; j <= i; j++) {
c[i][j] = c[i-][j-]+c[i-][j]; //组合数可以用杨辉三角来表示,c[i][j]=它左上方的元素+它正上方的元素
if(c[i][j] >= mod) c[i][j] -= mod;
}
}
} int main() {
init();
init2();
int T; cin >> T;
while(T--) {
int n, f, b; scanf("%d%d%d", &n, &f, &b); LL ans = (f+b- <= n && f+b- >= )? c[f+b-][f-]*s[n-][f+b-]% mod : ;
//c[f+b-2][f-1]的作用就是,将已经排好顺序的(f-1)个环按从小到大的顺序挑出f-1栋楼放在左边
printf("%lld\n", ans);
}
return ;
}
2018-08-12
HDU4372-Count the Buildings【第一类Stirling数】+【组合数】的更多相关文章
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
		
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
 - HDU 4372 Count the Buildings [第一类斯特林数]
		
有n(<=2000)栋楼排成一排,高度恰好是1至n且两两不同.现在从左侧看能看到f栋,从右边看能看到b栋,问有多少种可能方案. T组数据, (T<=100000) 自己只想出了用DP搞 发 ...
 - HDU 4372 Count the Buildings——第一类斯特林数
		
题目大意:n幢楼,从左边能看见f幢楼,右边能看见b幢楼 楼高是1~n的排列. 问楼的可能情况 把握看到楼的本质! 最高的一定能看见! 计数问题要向组合数学或者dp靠拢.但是这个题询问又很多,难以dp ...
 - HDU4372 Count the Buildings —— 组合数 + 第一类斯特林数
		
题目链接:https://vjudge.net/problem/HDU-4372 Count the Buildings Time Limit: 2000/1000 MS (Java/Others) ...
 - HDU 4372 Count the Buildings:第一类Stirling数
		
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...
 - [Hdu4372] Count the Buildings
		
[Hdu4372] Count the Buildings Description There are N buildings standing in a straight line in the C ...
 - 自然数幂和——第一类Stirling数和第二类Stirling数
		
第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...
 - hdu 4372 第一类stirling数的应用/。。。好题
		
/** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...
 - HDU 3625 Examining the Rooms:第一类stirling数
		
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...
 
随机推荐
- HDU4738 Caocao's Bridges【强连通】
			
题意: 曹操有N个岛,这些岛用M座桥连接起来,每座桥有士兵把守(也可能没有),周瑜想让这N个岛不连通,但只能炸掉一座桥,并且炸掉一座桥需要派出不小于守桥士兵数的人去,桥的守兵数为0时,也需要派出一个人 ...
 - linux C sscanf()函数
			
linux sscanf() 类似正则表达式,又不完全是正则表达式. 分割 ”/“ 或 "@" 或空格 要用 [^/] 例如: sscanf("iios/12DDWDFF ...
 - DropEditText
			
https://blog.csdn.net/jdsjlzx/article/details/46860563 https://github.com/qibin0506/DropEditText ...
 - 根据href给当前导航添加样式
			
var href = window.location.href.split('/')[window.location.href.split('/').length-1].substr(0,20); i ...
 - Windows下Anaconda的安装和简单使用
			
Windows下Anaconda的安装和简单使用 Anaconda is a completely free Python distribution (including for commercial ...
 - cmake介绍
			
1. cmake介绍 1.1 cmake用途 CMake的用途是能通过一系列的源码和相关的配置来生成需要的编译器平台上的项目文件.譬如,如果一个项目需要在Windows上用VS编译,在Linux上用m ...
 - MySQL5.7更改用户名密码
			
更改用户名密码,官方推荐使用alter ALTER USER test@'%' IDENTIFIED BY '; 还有一种 update mysql.user set authentication_s ...
 - 移动端中遇到的坑(bug)!!!
			
1.模拟单选点击的时候,在ios手机下,点击下面的内容选择,会出现页面闪一闪!! 解决方案:样式重置html的时候加上这句 -webkit-tap-highlight-color: rgba(0, ...
 - openstack swift节点安装手册2-创建rings
			
以下步骤需要在controller节点上进行操作: 切换到/etc/swift目录下进行如下操作: 一.创建account ring 1.创建account.builder文件 swift-ring- ...
 - @PathVariable和@RequestParam
			
@PathVariable 当使用@RequestMapping URI template 样式映射时, 即 someUrl/{paramId}, 这时的paramId可通过 @Pathvariabl ...