ssd制作数据和训练
1.在/data/VOCdevkit下建立自己的数据集名称如MyDataSet,在MyDataSet目录下需包含Annotations、ImageSets、JPEGImages三个文件夹:
2、ImageSets下建立Main文件夹
3、新建dir.py 写入下面代码
import os
import random trainval_percent = 0.66
train_percent = 0.5
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath) num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr) ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w') for i in list:
name=total_xml[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name) ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
4、运行python dir.py,在ImageSets\Main里有四个txt文件:test.txt train.txt trainval.txt val.txt
5、在caffe-ssd/data目录下创建一个自己的文件夹MyDataSet文件夹,把data/VOC0712目录下的create_list.sh 、create_data.sh、labelmap_voc.prototxt 这三个文件拷贝到MyDataSet下
6、在caffe-ssd/examples下创建MyDataSet文件夹,用于存放后续生成的lmdb文件
7、修改labelmap_voc.prototxt文件(改成自己的类别),以及create_list.sh和create_data.sh文件中的相关路径
#labelmap_voc.prototxt需修改:
item {
name: "none_of_the_above"
label: 0
display_name: "background"
}
item {
name: "aeroplane"
label: 1
display_name: "person"
} #create_list.sh需修改:
root_dir=/home/yi_miao/data/Mydataset/
...
for name in yourownset
...
#if [[ $dataset == "test" && $name == "VOC2012" ]]
# then
# continue
# fi #create_data.sh需修改:
root_dir=/home/yi_miao/caffe-ssd
data_root_dir="/home/yi_miao/data/Mydataset"
dataset_name="Mydataset"
8、运行脚本
./data/mydataset/create_list.sh
./data/mydataset/create_data.sh
9、训练
caffe/models/VGGNet/VGGNet 预训练模型
2、
82行:train_data路径;
84行:test_data路径;
237-246行:model_name、save_dir、snapshot_dir、job_dir、output_result_dir路径;
259-263行:name_size_file、label_map_file路径;
266行:num_classes修改为1 + 类别数;
360行:num_test_image:测试集图片数目
另外, 如果你只有一个GPU, 需要修改285行: gpus=”0,1,2,3” ===> 改为”0” ,如果出现 out of memory,则将batch size 相应改小一些。
3、训练
python ./examples/ssd/ssd_pascal.py
4、测试
1.测试单张图片
测试程序为/examples/ssd/ssd_detect.py,运行之前,我们需要修改相关路径代码,ssd_detect.py作如下修改(#部分为修改内容):
parser.add_argument('--labelmap_file',
default='data/VOC0712/labelmap_voc.prototxt')#**修改为你的路径**
parser.add_argument('--model_def',
default='models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt')#**修改为你的路径**
parser.add_argument('--image_resize', default=300, type=int)
parser.add_argument('--model_weights',
default='models/VGGNet/VOC0712/SSD_300x300/'#**修改为你的路径**
'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel')
parser.add_argument('--image_file', default='examples/images/fish-bike.jpg')#**修改为你的路径**
Python ./example/ssd/ssd_detect.py
c++测试
cd ssd-caffe
$ build/examples/ssd/ssd_detect.bin models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_120000.caffemodel examples/images/test.txt
其中test.txt内容为
examples/images/1.jpg
examples/images/2-bike.jpg
examples/images/3.jpg
结果可视化
$ python examples/ssd/plot_detections.py examples/images/result.txt /home/your path/ssd-caffe --labelmap-file data/VOC0712/labelmap_voc.prototxt --save-dir examples/
找不到
caffe.pb.h
$ protoc src/caffe/proto/caffe.proto --cpp_out=.
$ sudo mkdir include/caffe/proto
$ sudo mv src/caffe/proto/caffe.pb.h include/caffe/proto
参考:https://blog.csdn.net/yu734390853/article/details/79481660
ssd制作数据和训练的更多相关文章
- caffe_ssd学习-用自己的数据做训练
几乎没用过linux操作系统,不懂shell编程,linux下shell+windows下UltraEdit勉勉强强生成了train.txt和val.txt期间各种错误辛酸不表,照着examples/ ...
- 如何利用excel中的数据源制作数据地图
关于这个问题,制作数据地图的方法已不新奇,总体来说有这么几类方案: 一类方案:直接在excel里制作 优势:个人小数据量应用较为方便简单 缺点:需要熟悉VBA,且更强大的功能对VBA水平要求较高 1. ...
- Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如何使用尽可能少的标注数据来训练一个效果有潜力的分类器
作者:AI研习社链接:https://www.zhihu.com/question/57523080/answer/236301363来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- 迁移学习算法之TrAdaBoost ——本质上是在用不同分布的训练数据,训练出一个分类器
迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法 ...
- kaldi使用thchs30数据进行训练并执行识别操作
操作系统 : Ubutu18.04_x64 gcc版本 :7.4.0 数据准备及训练 数据地址: http://www.openslr.org/18/ 在 egs/thchs30/s5 建立 thch ...
- Python 爬取 热词并进行分类数据分析-[云图制作+数据导入]
日期:2020.01.28 博客期:136 星期二 [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 所有相关跳转: a.[简单准备] b.[云图制作+数据导入](本期博客) ...
- 使用 TensorBoard 可视化模型、数据和训练
使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测 ...
- LUSE: 无监督数据预训练短文本编码模型
LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私 ...
- VGGnet——从TFrecords制作到网络训练
作为一个小白中的小白,多折腾总是有好处的,看了入门书和往上一些教程,很多TF的教程都是从MNIST数据集入手教小白入TF的大门,都是直接import MNIST,然后直接构建网络,定义loss和opt ...
随机推荐
- 如何开启Intel HAXM功能
1. 启用BIOS中的Intel(R) Virtualization Technology选项 2.设置成功后,在控制台中输入sc query intelhaxm.出现下图即为成功 3. 启动andr ...
- JXOI2018守卫 区间DP
链接 https://loj.ac/problem/2545 思路 f[i][j]表示i到j区间的最小监视人数 可以预处理出来g[i][j],表示i能否监视到j (其实预处理的关系不大,完全可以直接判 ...
- P2536 [AHOI2005]病毒检测
反思 对于*符号,明明可以让相同位置再次匹配下一个,或者跳过当前位置匹配,但是却写了个把trie的子树全部push进队列的垃圾写法,结果一直MLE 告辞 思路 模板串多且不长,可以塞到trie树里,这 ...
- (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning
Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...
- PTA 7-1 畅通工程之局部最小花费问题(35 分)
7-1 畅通工程之局部最小花费问题(35 分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的 ...
- JUnit 4 Vs TestNG比较
JUnit 4和TestNG都是Java中非常受欢迎的单元测试框架.两种框架在功能上看起来非常相似. 哪一个更好? 在Java项目中应该使用哪个单元测试框架? 下面表中概括了JUnit 4和TestN ...
- _itemmod_refresh
-- 随机FM刷新设置-- 小技巧:很多服所说的装备鉴定效果可以通过这个实现,也可以对物品重新生成新的附魔--详细解说一下鉴定系统如何实现--1首先在_itemmod_enchant_groups中添 ...
- 为 10000+ 业务系统提供数据可视化能力的 AntV 又进化了
小蚂蚁说: 2018 年 AntV 品牌日以知新.知心为主题,旨在让产品一直「知新」,与用户一直「知心」.AntV 是蚂蚁金服全新一代数据可视化解决方案,致力于提供一套简单方便.专业可靠.无限可能的数 ...
- tarjan 缩点(模板)
描述: 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 注:允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 思路: ...
- ssh连接服务器
1.命令行操作 第一步输入 :ssh 用户名@服务器外网ip 第二步:输入密码,回车 看到welcome提示信息即为登陆成功 输入:exit 退出 2.客户端操作 windows下载ssh软件,安装 ...