Ref: Combining CNN and RNN for spoken language identification

Ref: Convolutional Methods for Text

[1] CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS

[2] Efficient Character-level Document Classification by Combining Convolution and Recurrent Layers

结合此文,对sentiment prediction做进一步的性能提升。

一个近似的例子:https://github.com/LopezGG/NN_NER_tensorFlow/blob/master/network.py

       #Embedding layer (is always built on CPU. There is bug that makes embedding fail on GPU)
with tf.device('/cpu:0'), tf.name_scope("char_embedding"):
#plus 1 becuase 0 is for unknown char
self.W_char = tf.Variable(tf.random_uniform([char_vocab_size+1, char_embedd_dim],-1,1),trainable=True, name="W_char")
self.char_embedding_placeholder = tf.placeholder(tf.float32, [char_vocab_size+1, char_embedd_dim])
char_embedding_init = self.W_char.assign(self.char_embedding_placeholder)
self.embedded_char = tf.nn.embedding_lookup(self.W_char, self.input_x_char_flat,name="embedded_char") #shape [batch_size,max_char_per_word*sequence_length,char_embedd_dim]
self.embedded_char_dropout =tf.nn.dropout(self.embedded_char, self.dropout_keep_prob,name="embedded_char_dropout")
#Add CNN get filters and combine with word
with tf.name_scope("char_conv_maxPool"):
filter_shape = [filter_size, char_embedd_dim, num_filters]
W_conv = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W_conv")
b_conv = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b_conv") conv = tf.nn.conv1d(self.embedded_char_dropout,
W_conv,
stride=1,
padding="SAME",
name="conv") #will have dimensions [batch_size,out_width,num_filters] out_width is a function of max_words,filter_size and stride_size #(?, 3051, 20)
#out_width for same padding iwth stride 1 given by (max_char_per_word*sequence_length)
print("conv.get_Shape(): ",conv.get_shape())
# Apply nonlinearity TODO: Test without relu
#h = tf.nn.bias_add(conv, b_conv,name="add bias")#does not change dimensions
h_expand = tf.expand_dims(conv, -1)
print("h_expand.get_Shape(): ",h_expand.get_shape())
pooled = tf.nn.max_pool(
h_expand,
#[batch, height, width, channels]
ksize=[1,sequence_length * max_char_per_word,1, 1], #On the batch size dimension and the channels dimension, ksize is 1 because we don't want to take the maximum over multiple examples, or over multiples channels.
strides=[1, max_char_per_word, 1, 1],
padding='SAME',
name="pooled")
#print("pooled.get_Shape(): ",pooled.get_shape())
#[batch_size,(max_char_per_word*sequence_length), num_filters, 1] --> [batch, sequence_length, num_filters] , same as word_embedding layer (?, 113, 20, 1) --> (?, 113, 20)
self.char_pool_flat = tf.reshape(pooled, [-1,sequence_length,num_filters],name="char_pool_flat")
#print("self.char_pool_flat.get_shape(): ",self.char_pool_flat.get_shape())
#[batch, sequence_length, word_embedd_dim+num_filters]
self.word_char_features = tf.concat([self.embedded_words, self.char_pool_flat], axis=2) #we mean that the feature with index 2 i/e num_filters is variable
#print("self.word_char_features.get_shape(): ",self.word_char_features.get_shape())
self.word_char_features_dropout =tf.nn.dropout(self.word_char_features, self.dropout_keep_prob,name="word_char_features_dropout")

Combinations of CNN and RNN

The general architecture of these combinations is a convolutional feature extractor applied on the input, then some recurrent network on top of the CNN’s output, then an optional fully connected layer on RNN’s output and finally a softmax layer.

The output of the CNN is a set of several channels (also known as feature maps). We can have separate GRUs acting on each channel (with or without weight sharing) as described in this picture (Left).

Another option is to interpret CNN’s output as a 3D-tensor and run a single GRU on 2D slices of that tensor, picture (Right).

The latter option has more parameters,but the information from different channels is mixed inside the GRU, and it seems to improve performance. 【后者貌似好】

This architecture is similar to the one described in this paper[1] on speech recognition,

except that they also use some residual connections (“shortcuts”) from input to RNN and from CNN to fully connected layers.

It is interesting to note that recently it was shown that similar architectures work well for text classification[2].

Network Accuracy Notes
tc_net_rnn 92.4 CNN consists of 3 convolutional blocks and outputs 32 channels of size 104x13. Each of these channels is fed to a separate GRU as a sequence of 104 vectors of size 13. The outputs of GRUs are combined and fed to a fully connected layer
tc_net_rnn_nodense 91.94 Same as above, except there is no fully connected layer on top of GRUs. Outputs of GRU are fed directly to the softmax layer
tc_net_rnn_shared 96.96 Same as above, but the 32 GRUs share weights. This helped to fight overfitting
tc_net_rnn_shared_pad 98.11 4 convolutional blocks in CNN using pad=2 instead of ignore_broder=False(which enabled CuDNN and the training became much faster). The output of CNN is a set of 32 channels of size 54x8. 32 GRUs are applied (one for each channel) with shared weights and there is no fully connected layer
tc_net_deeprnn_shared_pad 95.67 4 convolutional block as above, but 2-layer GRUs with shared weights are applied on CNN’s outputs. Overfitting became stronger because of this second layer
tc_net_shared_pad_augm 98.68 Same as tc_net_rnn_shared_pad, but the network randomly crops the input and takes 9s interval. The performance became a bit better due to this
tc_net_rnn_onernn 99.2 The outputs of a CNN with 4 convolutional blocks are grouped into a 32x54x8 3D-tensor and a single GRU runs on a sequence of 54 vectors of size 32*8
tc_net_rnn_onernn_notimepool 99.24 Same as above, but the stride along the time axis is set to 1 in every pooling layer. Because of this the CNN outputs 32 channels of size 852x8

The second layer of GRU in this setup didn’t help due to the overfitting.

It seems that subsampling in the time dimension is not a good idea. The information that is lost during subsampling can be better used by the RNN.

In the paper on text classification[2] by Yijun Xiao and Kyunghyun Cho, the authors even suggest that maybe all pooling/subsampling layers can be replaced by recurrent layers.

训练技巧

These networks were trained using SGD with momentum only. The learning rate was set to 0.003 for around 10 epochs, then it was manually decreased to 0.001 and then to 0.0003. On average, it took 35 epochs to train these networks.

Ensembling

The best single model had 99.24% accuracy on the validation set. We had 33 predictions by all these models (there were more than one predictions for some models, taken after different epochs) and we just summed up the predicted probabilities and got 99.67% accuracy. Surprisingly, our other attempts of ensembling (e.g. majority voting, ensemble only on some subset of all models) didn’t give better results.

[Tensorflow] RNN - 04. Work with CNN for Text Classification的更多相关文章

  1. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  2. Implementing a CNN for Text Classification in TensorFlow

    参考: 1.Understanding Convolutional Neural Networks for NLP 2.Implementing a CNN for Text Classificati ...

  3. CNN tensorflow text classification CNN文本分类的例子

    from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) T ...

  4. [Tensorflow] RNN - 01. Spam Prediction with BasicRNNCell

    Ref: http://blog.csdn.net/mebiuw/article/details/60780813 Ref: https://medium.com/@erikhallstrm/hell ...

  5. TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载

    http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...

  6. tensorflow rnn 最简单实现代码

    tensorflow rnn 最简单实现代码 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf from te ...

  7. TensorFlow RNN MNIST字符识别演示快速了解TF RNN核心框架

    TensorFlow RNN MNIST字符识别演示快速了解TF RNN核心框架 http://blog.sina.com.cn/s/blog_4b0020f30102wv4l.html

  8. Ubuntu16.04下搜狗输入法、Sublime Text 3的安装

    Ubuntu16.04下搜狗输入法.Sublime Text 3的安装 一.搜狗输入法 1. 安装中文语言 默认在Ubuntu16.04下是没有中文的,需要安装中文,在System Settings- ...

  9. 论文列表——text classification

    https://blog.csdn.net/BitCs_zt/article/details/82938086 列出自己阅读的text classification论文的列表,以后有时间再整理相应的笔 ...

随机推荐

  1. 在linux上安装tomcat

    (1)主要参考https://jingyan.baidu.com/article/3065b3b6e0fad2becff8a419.html(这个看后基本知道怎么安装tomcat) 其次参考:http ...

  2. 发布Docker 镜像到dockerhub

    公有仓库 docker提供了一个类似于github的仓库dockerhub, 网址 https://hub.docker.com/ 需要注册使用 注意要保证image的tag是账户名,如果镜像名字不对 ...

  3. AJAX异步传输——以php文件传输为例

     此文档解决以下问题: 一.在当前html页面显示请求的数据1.get方式请求 ,不传递参数2.get方式请求 ,传递参数3.post方式请求 ,不传递参数4.post方式请求 ,传递参数 二.通过按 ...

  4. Qt 4.6.2静态编译

    一.下载mingw 4.4.0:ftp://ftp.trolltech.com/misc/MinGW-gcc440_1.zip 二.解压到C:\mingw目录下,设置环境变量path将C:\mingw ...

  5. Reveal:分析iOS UI的利器

    转:http://security.ios-wiki.com/issue-3-4/ Reveal简介 Reveal是分析iOS应用UI的利器: Reveal能够在运行时调试和修改iOS应用程序.它能连 ...

  6. .NET:Threading and Exceptions

    Do handle exceptions in threads. Unhandled exceptions in threads, even background threads, generally ...

  7. boolean和Boolean, char和Character , byte和Byte, short和Short, int和Integer , long和Long , float和Float, double和Double的区别 , String和StringBuffer的区别

    Java提供两种不同的类型:引用类型和原始类型(内置类型).Int是java的原始数据类型,Integer是java为int提供的封装类. Java为每个原始数据类型提供了封装类. 其中原始数据类型封 ...

  8. PL/SQL学习笔记之函数

    一:函数 函数与过程的最大不同就是,函数有返回值.适用于需要返回结果的场景. 二:创建函数 CREATE [OR REPLACE] FUNCTION function_name [(parameter ...

  9. Mongodb查询命令详解

    前面我们简单的讲了下find方法,下面来深入的过一下它的用法以及常用的字方法. 下面是mongo中db.user.help()中对find方法的定义和解释: db.user.find([query], ...

  10. 【HTML打印】HTML直接调用window下的打印机并执行打印任务(简单打印任务生成)

    1.<button onclick="preview('data');" id="print">打印</button> 2. 3.js: ...