题目链接: COGSBZOJ3236

Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询。同BZOJ3809.

莫队为\(O(n^{1.5})\)次修改和\(O(n)\)次查询。

注意这两个需求并不平衡,所以在搭配数据结构时常使用分块而不是线段树。

(转自莫队复杂度分析 by Meiku Kazami)

1.莫队+树状数组

/*
每个[l,r]的询问中又多了[a,b]值的限制。原先now是所有种类的个数,所以用 莫队+树状数组做
两问,维护两个树状数组
O(m*sqrt(n)*logn)
*/
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=1e5+5,M=1e6+5; int n,m,size,A[N],t1[N],t2[N],times[N],Ans1[M],Ans2[M];
struct Ques
{
int l,r,a,b,id;
bool operator <(const Ques &x)const
{
return l/size==x.l/size ? r<x.r : l/size<x.l/size;
}
}q[M]; inline int read()
{
int now=0,f=1;register char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=getchar());
return now*f;
} inline int lb(int x)
{
return x&-x;
}
void Update(int p,int v,int *t)
{
while(p<=n)
t[p]+=v, p+=lb(p);
}
int Query(int p,int *t)
{
int res=0;
while(p)
res+=t[p], p-=lb(p);
return res;
}
void Add(int p)
{
Update(A[p],1,t1);
if(!times[A[p]]) Update(A[p],1,t2);
++times[A[p]];
}
void Subd(int p)
{
Update(A[p],-1,t1);
--times[A[p]];
if(!times[A[p]]) Update(A[p],-1,t2);
} int main()
{
freopen("ahoi2013_homework.in","r",stdin);
freopen("ahoi2013_homework.out","w",stdout); n=read(),m=read();
size=sqrt(n);
for(int i=1;i<=n;++i)
A[i]=read();
for(int i=1;i<=m;++i)
q[i].l=read(), q[i].r=read(), q[i].a=read(), q[i].b=read(), q[i].id=i;
sort(q+1,q+1+m);
for(int l=1,r=0,i=1;i<=m;++i)
{
int ln=q[i].l,rn=q[i].r;
while(l<ln) Subd(l++);
while(l>ln) Add(--l);
while(r<rn) Add(++r);
while(r>rn) Subd(r--);
Ans1[q[i].id]=Query(q[i].b,t1)-Query(q[i].a-1,t1),//注意值的区间是[a,b]不是[l,r]
Ans2[q[i].id]=Query(q[i].b,t2)-Query(q[i].a-1,t2);
// printf("%d:%d %d ans1:%d ans2:%d\n",q[i].id,ln,rn,Ans1[q[i].id],Ans2[q[i].id]);
}
for(int i=1;i<=m;++i)
printf("%d %d\n",Ans1[i],Ans2[i]); fclose(stdin);fclose(stdout);
return 0;
}

2.莫队+值域分块

#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1e5+5,MAXIN=2e6; int n,m,size,Ans1[N*10],Ans2[N*10],A[N],tm[N],bel[N],sum1[500],sum2[500];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Ask
{
int l,r,a,b,id;
bool operator <(const Ask &a)const
{
return l/size==a.l/size ? r<a.r : l/size<a.l/size;//更快 WTF
// return l/size==a.l/size?((l-1)/size&1 ? r>a.r : r<a.r):l/size<a.l/size;
}
}q[N*10]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int Query(int *s,int l,int r,bool f)
{
int res=0,tmp=std::min(r,bel[l]*size);
for(int i=l; i<=tmp; ++i) res+= f?(tm[i]>0):tm[i];
if(bel[l]!=bel[r])
for(int i=(bel[r]-1)*size+1; i<=r; ++i)
res+= f?(tm[i]>0):tm[i];
for(int i=bel[l]+1; i<bel[r]; ++i) res+=s[i];
return res;
}
void Add(int p)
{
if(++tm[p]==1) ++sum2[bel[p]];
++sum1[bel[p]];
}
void Subd(int p)
{
if(!--tm[p]) --sum2[bel[p]];
--sum1[bel[p]];
} int main()
{
n=read(), m=read(), size=sqrt(n);;//size=n/sqrt(m*2/3) //也没有更快 数组大小还要注意
for(int i=1; i<=n; ++i) bel[i]=(i-1)/size+1, A[i]=read();
for(int i=1; i<=m; ++i) q[i].l=read(),q[i].r=read(),q[i].a=read(),q[i].b=read(),q[i].id=i;
std::sort(q+1,q+1+m);
for(int l=1,r=0,ln,rn,i=1; i<=m; ++i)
{
int ln=q[i].l,rn=q[i].r;
while(l<ln) Subd(A[l++]);
while(l>ln) Add(A[--l]);
while(r<rn) Add(A[++r]);
while(r>rn) Subd(A[r--]);
Ans1[q[i].id]=Query(sum1,q[i].a,q[i].b,0), Ans2[q[i].id]=Query(sum2,q[i].a,q[i].b,1);
}
for(int i=1; i<=m; ++i) printf("%d %d\n",Ans1[i],Ans2[i]); return 0;
}

COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)的更多相关文章

  1. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  2. BZOJ 3236: [Ahoi2013]作业(莫队+树状数组)

    传送门 解题思路 莫队+树状数组.把求\([a,b]\)搞成前缀和形式,剩下的比较裸吧,用\(cnt\)记一下数字出现次数.时间复杂度\(O(msqrt(n)log(n)\),莫名其妙过了. 代码 # ...

  3. [AHOI2013]作业 莫队 树状数组

    #include<cmath> #include<cstdio> #include<algorithm> #include<string> #inclu ...

  4. bzoj3236 作业 莫队+树状数组

    莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  5. BZOJ 3236 AHOI 2013 作业 莫队+树状数组

    BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出     题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...

  6. BZOJ_3289_Mato的文件管理_莫队+树状数组

    BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...

  7. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  8. 51nod 1290 Counting Diff Pairs | 莫队 树状数组

    51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...

  9. 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)

    点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...

随机推荐

  1. 【转】Python之列表生成式、生成器、可迭代对象与迭代器

    [转]Python之列表生成式.生成器.可迭代对象与迭代器 本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterabl ...

  2. [Shell]获取IP地址

    ifconfig eth0 | grep "inet addr:" | awk '{print $2}' | cut -c 6- ifconfig eth1 | grep &quo ...

  3. php数据库的增删改查

    1.查询: 数据的显示,这里就可以嵌入php来进行数据的输出 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...

  4. C/C++杂记:虚函数的实现的基本原理

    1. 概述 简单地说,每一个含有虚函数(无论是其本身的,还是继承而来的)的类都至少有一个与之对应的虚函数表,其中存放着该类所有的虚函数对应的函数指针.例: 其中: B的虚函数表中存放着B::foo和B ...

  5. 域名调整 SEO优化(nginx)

    =============================================== 2019/3/31_第1次修改                       ccb_warlock == ...

  6. jquery里面的$.each()方法

    $.each可以迭代jquery对象和数组 $(selector).each()专注于jquery对象的遍历

  7. js十大排序算法详解

    十大经典算法导图  图片名词解释:n: 数据规模k:“桶”的个数In-place: 占用常数内存,不占用额外内存Out-place: 占用额外内存 1.冒泡排序 1.1  原始人冒泡排序 functi ...

  8. Tesseract_ocr 字符识别基础及训练字库、合并字库

    字符训练网上一搜一大堆,但作为一个初学者而言,字符合并网上却写的很笼统 首先,需要 生成的字符集.tif文件,位置文件 .box ,只要有这两个文件在,就可以合并字典(这个说的很有道理的样子) 好了, ...

  9. Webpack安装和命令

    1.定位到创建的目录 cd H:\webpacktest 2.初始化: npm init 3.一路回车 4.执行(安装到项目的依赖项中) npm install webpack --save-dev ...

  10. 用两个int值实现读写锁

    private int readcount = 0; private int writecount = 0; public void lockread() throws InterruptedExce ...