好用的不是一点点、、=-=、、

import tensorflow as tf
import tflearn
import tflearn.datasets.mnist as mnist

# Using MNIST Dataset
import tflearn.datasets.mnist as mnist
mnist_data = mnist.read_data_sets(one_hot=True)

# User defined placeholders
with tf.Graph().as_default():
    # Placeholders for data and labels
    X = tf.placeholder(shape=(None, 784), dtype=tf.float32)
    Y = tf.placeholder(shape=(None, 10), dtype=tf.float32)

    net = tf.reshape(X, [-1, 28, 28, 1])

    # Using TFLearn wrappers for network building
    net = tflearn.conv_2d(net, 32, 3, activation='relu')
    net = tflearn.max_pool_2d(net, 2)
    net = tflearn.local_response_normalization(net)
    net = tflearn.dropout(net, 0.8)
    net = tflearn.conv_2d(net, 64, 3, activation='relu')
    net = tflearn.max_pool_2d(net, 2)
    net = tflearn.local_response_normalization(net)
    net = tflearn.dropout(net, 0.8)
    net = tflearn.fully_connected(net, 128, activation='tanh')
    net = tflearn.dropout(net, 0.8)
    net = tflearn.fully_connected(net, 256, activation='tanh')
    net = tflearn.dropout(net, 0.8)
    net = tflearn.fully_connected(net, 10, activation='linear')

    # Defining other ops using Tensorflow
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=net, labels=Y))
    optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)

    # Initializing the variables
    init = tf.initialize_all_variables()

    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)

        batch_size = 128
        for epoch in range(2): # 2 epochs
            avg_cost = 0.
            total_batch = int(mnist_data.train.num_examples/batch_size)
            for i in range(total_batch):
                batch_xs, batch_ys = mnist_data.train.next_batch(batch_size)
                sess.run(optimizer, feed_dict={X: batch_xs, Y: batch_ys})
                cost = sess.run(loss, feed_dict={X: batch_xs, Y: batch_ys})
                avg_cost += cost/total_batch
                if i % 20 == 0:
                    print "Epoch:", '%03d' % (epoch+1), "Step:", '%03d' % i, "Loss:", str(cost)

结果:

TFLearn 与 Tensorflow 一起使用的更多相关文章

  1. NN tutorials:

    确实“人话”解释清楚了 ^_^ 池化不只有减少参数的作用,还可以: 不变性,更关注是否存在某些特征而不是特征具体的位置.可以看作加了一个很强的先验,让学到的特征要能容忍一些的变化.防止过拟合,提高模型 ...

  2. Tensorflow tflearn 编写RCNN

    两周多的努力总算写出了RCNN的代码,这段代码非常有意思,并且还顺带复习了几个Tensorflow应用方面的知识点,故特此总结下,带大家分享下经验.理论方面,RCNN的理论教程颇多,这里我不在做详尽说 ...

  3. tflearn tensorflow LSTM predict sin function

    from __future__ import division, print_function, absolute_import import tflearn import numpy as np i ...

  4. TensorFlow 之 高层封装slim,tflearn,keras

    tensorflow资源整合 使用原生态TensorFlow API来实现各种不同的神经网络结构.虽然原生态的TensorFlow API可以很灵活的支持不同的神经网络结构,但是其代码相对比较冗长,写 ...

  5. tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用——模型层次太深,或者太复杂训练时候都不会收敛

    tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用. 数据目录在data,data下放了汉字识别图片: data$ ls0  1  10  11  12  13  14  15 ...

  6. anaconda tensorflow tflearn 自动安装脚本 anaconda使用-b可以非交互式安装

    install_dir=/usr/local/anaconda3 DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )&qu ...

  7. 将tflearn的模型保存为pb,给TensorFlow使用

    参考:https://github.com/tflearn/tflearn/issues/964 解决方法: """ Tensorflow graph freezer C ...

  8. TensorFlow实战笔记(17)---TFlearn

    目录: 分布式Estimator 自定义模型 建立自己的机器学习Estimator 调节RunConfig运行时的参数 Experiment和LearnRunner 深度学习Estimator 深度神 ...

  9. 吴裕雄--天生自然TensorFlow高层封装:使用TFLearn处理MNIST数据集实现LeNet-5模型

    # 1. 通过TFLearn的API定义卷机神经网络. import tflearn import tflearn.datasets.mnist as mnist from tflearn.layer ...

随机推荐

  1. [LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆

    转载:https://leetcode.windliang.cc/leetCode-23-Merge-k-Sorted-Lists.html 描述 Merge k sorted linked list ...

  2. java关键字总结

    static: 用来修饰成员变量和成员方法,也可以形成静态static代码块,可以形成静态内部类,也可以用于静态导包. 1.静态方法中不能用this和super关键字,不能直接访问所属类的实例变量和实 ...

  3. redis的文件事件

    redis的文件事件:即与io相关的事件. /* File event structure */ typedef struct aeFileEvent { int mask; /* one of AE ...

  4. P2P通信中使用ENet提供UDP的可靠传输

    ENet官网:http://enet.bespin.org/ 按照他的说法: ENet's purpose is to provide a relatively thin, simple and ro ...

  5. Resharper插件的使用

    一.Resharper设置 1.1 智能提示 安装完毕后,IDE 的智能提示(Intellisense)便会默认使用 Resharper 的提示,不知道为什么,我一直不太喜欢它的提示.改过来,是在Op ...

  6. HashMap与TreeMap按照key和value排序

    package com.sort; import java.util.ArrayList; import java.util.Collections; import java.util.Compara ...

  7. git教程(全)

    参考: http://blog.jobbole.com/78960/

  8. OO作业总结(三)

    类规格设计 由于没能找到关于类规格设计的发展历史,所以结合程序设计思想的发展来谈谈规格化设计. 最早的程序设计都是采用机器语言来编写的,直接使用二进制码来表示机器能够识别和执行的指令和数 据.简单来说 ...

  9. flask不定参数的传递。多参数,多次传递

    有的时候有一个分类查询,再来一个排序,这就有两个参数要传递多次. 还是不定长度,不定内容的传递. 这个是用request.args来实现: def home(): requests=request.a ...

  10. Mybatis的二级缓存注意点

    --声明:一下内容都不一定是正确的,只是自己测试的结果,请自己的动手操作得出自己的结论 1.开启Mybatis的二级缓存,不仅要在SqlMapConfig.xml中进行开启总开关,还要在对应的XXXM ...