P1357 花园
状压dp+矩乘
首先看到题目说M<=5,这么小的数据明显可以用状压保存相邻状态,于是可以得到一个80分的dp:
先筛出所有可用的状态,然后建立一个矩阵保存可转移的状态,再然后把每个状态都当成最初状态各跑一次dp,累计答案
然而我们发现,n太大了。又发现,其实每次转移可以直接用矩乘来搞(用到了状态矩阵)
于是就用矩乘了。嗯,就这样,具体看题解吧。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int mod=;
ll n,ans;
int m,k,cnt;
int state[];
struct matrix{
int a[][];
matrix(){memset(a,,sizeof(a));}
matrix operator * (matrix &tmp){
matrix c;
for(int i=;i<=cnt;++i)
for(int j=;j<=cnt;++j)
for(int k=;k<=cnt;++k)
c.a[i][j]=(ll)(c.a[i][j]+(ll)a[i][k]*tmp.a[k][j]%mod)%mod;
return c;
}
matrix ksm(matrix x,ll y){
matrix ans;
for(int i=;i<=cnt;++i) ans.a[i][i]=;
for(;y;y>>=){
if(y&) ans=ans*x;
x=x*x;
}
return ans;
}
}st,mul; int main(){
scanf("%lld%d%d",&n,&m,&k);
for(int i=(<<m)-;i>=;--i){
int t=;
for(int j=i;j;j>>=) t+=(j&);
if(t<=k) state[++cnt]=i;
} //筛出可用状态
for(int i=;i<=cnt;++i)
for(int j=;j<=cnt;++j)
{
int x=state[i],y=state[j]>>,ok=;
for(int k=m-;k;--k){
if((x&)!=(y&)) {ok=; break;}
x>>=; y>>=;
}
mul.a[i][j]=ok;
} //可转移状态矩阵
for(int i=;i<=cnt;++i) st.a[i][i]=;
mul=mul.ksm(mul,n);
st=st*mul;
for(int i=;i<=cnt;++i) ans=(ans+st.a[i][i])%mod; //累计矩阵对角线上的答案
printf("%lld",ans);
return ;
}
P1357 花园的更多相关文章
- 洛谷 P1357 花园 解题报告
P1357 花园 题目描述 小\(L\)有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为\(1~N(2<=N<=10^{15})\).他的环形花园每天都会换一个新花样,但他的花园都不 ...
- 题解:洛谷P1357 花园
题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换 ...
- 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)
题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...
- P1357 花园 状压 矩阵快速幂
题意 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(2<=N<=10^15).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻M(2<=M& ...
- [洛谷P1357] 花园
题目类型:状压\(DP\) -> 矩阵乘法 绝妙然而思维难度极其大的一道好题! 传送门:>Here< 题意:有一个环形花圃,可以种两种花:0或1. 要求任意相邻的\(M\)个花中1的 ...
- luogu P1357 花园
传送门 先考虑朴素dp,设\(f_{i,j}\)表示推了\(i\)次,前\(m\)个点的状态为二进制数\(j\)(这里记放C为1),转移的时候枚举下一位放什么,还要考虑是否满足C的个数\(\leq k ...
- 【洛谷】P1357 花园(状压+矩阵快速幂)
题目 传送门:QWQ 分析 因为m很小,考虑把所有状态压成m位二进制数. 那么总状态数小于$ 2^5 $. 如果状态$ i $能转移到$ j $,那么扔进一个矩阵,n次方快速幂一下. 答案是对角线之和 ...
- P1357 花园 (矩阵快速幂+ DP)
题意:一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 m <= 5 n <= 1e15 题解:用一个m位二进制表示状态 转移很好想 但是这个题是用矩阵快速 ...
- 洛谷 P1357 花园
题意简述 一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 题解思路 由于\(m<=5\)所以很显然状压 但由于\(n<=10^{15}\).可以考虑用矩阵加 ...
随机推荐
- [LeetCode] 744. Find Smallest Letter Greater Than Target_Easy tag: **Binary Search
Given a list of sorted characters letters containing only lowercase letters, and given a target lett ...
- Mac Maven配置
Maven下载链接,解压到指定目录,我这里是 /Users/JYH/Desktop/Hadoop-2.7.2/apache-maven-3.3.9 打开终端,配置环境变量 输入命令 vi ~/.bas ...
- Linux下修改MySQL数据库字符编码为UTF-8解决中文乱码
由于MySQL编码原因会导致数据库出现乱码. 解决办法: 修改MySQL数据库字符编码为UTF-8,UTF-8包含全世界所有国家需要用到的字符,是国际编码. 具体操作: 1.进入MySQL控制台 &g ...
- 超参数调试、Batch正则化和编程框架
1.调试处理 2.为超参数选择合适的范围 3.超参数在实践中调整:熊猫与鱼子酱 4.正则化网络的激活函数 5.将batch norm拟合进神经网络 6. 为什么Batch Norm会起作用? 7.测试 ...
- web.config或App.config中AttachDBFilenamex相对路径问题
<add name="employeeManagerConnectionString" connectionString="Data Source=.\SQLExp ...
- 删掉centos原有的openjdk并安装sun jdk
[环境变量]删掉centos原有的openjdk并安装sun jdk 一.卸载原有openjdk rpm -qa | grep java 之后,将展示出来的全部卸载掉,我这里是5个 rpm -e ...
- why big data
很多人都知道大数据很火,就业很好,薪资很高,想往大数据方向发展.但该学哪些技术,学习路线是什么样的呢?用不用参加大数据培训呢?如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么大讲台老师就想 ...
- sitecore系列教程之更改您的个人设置
在Sitecore控制面板中,您可以设置个人设置,例如密码或区域和语言选项,以使应用程序满足您的需求. 要更改您的个人设置: 在Sitecore Launchpad上,单击“ 控制面板”. 在“控制面 ...
- CocoaPod 问题(I)
问题一 报错:_OBJC_CLASS_$_ 方案:https://blog.csdn.net/duxinfeng2010/article/details/8265273 问题二: [!] Oh no, ...
- java一维数组作业
package zuoYe; import java.util.Scanner; public class MaxSubArray { public static void main(String[] ...