Problem Statement
    
Charlie has N pancakes. He wants to serve some of them for breakfast. We will number the pancakes 0 through N-1. For each i, pancake i has width i+1 and deliciousness d[i].
Charlie chooses the pancakes he is going to serve using the following randomized process: He starts by choosing the first pancake uniformly at random from all the pancakes he has. He places the chosen pancake onto a plate. This pancake now forms the bottom of a future stack of pancakes. Then, Charlie repeats the following procedure:
If there are no more pancakes remaining, terminate.
Choose a pancake uniformly at random from the pancakes that have not been chosen yet.
If the width of this pancake is greater than the width of the pancake on top of the stack, terminate without taking it.
Place the chosen pancake on top of the stack and go back to step 1.
You are given the vector <int> d with N elements. The total deliciousness of a serving of pancakes is the sum of the deliciousness of all pancakes used in the serving. Compute and return the expected value of the total deliciousness of the pancakes chosen by Charlie.
Definition
    
Class:
RandomPancakeStack
Method:
expectedDeliciousness
Parameters:
vector <int>
Returns:
double
Method signature:
double expectedDeliciousness(vector <int> d)
(be sure your method is public)
Limits
    
Time limit (s):
2.000
Memory limit (MB):
256
Stack limit (MB):
256
Notes
-
Your return value must have an absolute or relative error smaller than or equal to 1e-6
Constraints
-
The number of elements in d will be between 1 and 250, inclusive.
-
Each element of d will be between 1 and 1,000, inclusive.
Examples
0)

{1,1,1}
Returns: 1.6666666666666667
The following scenarios may occur:
With probability 1/3, Charlie chooses pancake 0 first. In this case he won't be able to add any more pancakes and the total deliciousness of his serving of pancakes will be 1.
With probability 1/3, Charlie chooses pancake 1 first. What happens in the second round? With probability 1/2 he will choose pancake 0 and with probability 1/2 it will be pancake 2. In the first case the total deliciousness of Charlie's pancakes will be 2, in the second case it will be 1.
With probability 1/3, Charlie chooses pancake 2 first. If he chooses pancake 0 next, the total deliciousness of his pancakes will be 2. If he happens to choose pancake 1 next (followed by pancake 0 in the third round), the total deliciousness will be 3.
Summing this up, we get the expected deliciousness to be 1/3 * (1) + 1/3 * (1/2 * 1 + 1/2 * 2) + 1/3 * (1/2 * 2 + 1/2 * 3) = 5/3 = 1.666...
1)

{3,6,10,9,2}
Returns: 9.891666666666667

2)

{10,9,8,7,6,5,4,3,2,1}
Returns: 10.999999724426809

3)

{1,2,3,4,5,6,7,8,9,10}
Returns: 7.901100088183421

4)

{2,7,1,8,2,8,1,8,2,8,4,5,90,4,5,2,3,5,60,2,8,74,7,1}
Returns: 19.368705050402465

5)

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
Returns: 1.718281828459045

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

期望Dp, 不得不承认自己是个概率白痴,这么简单的问题都想了这么久

dp[i][j] 表示选到第i个 ,选了j 个还能选多少个的期望~

#include <bits/stdc++.h>
using namespace std;
const int N = ;
class RandomPancakeStack
{
public:
double dp[N][N] , dd[N];
bool vis[N][N];
int n ; double Dp( int i , int cnt ) {
if( i == ) return dd[] ;
if( !vis[i][cnt] ) {
vis[i][cnt] = true ;
double &c = dp[i][cnt] ;
c = dd[] ;
for( int j = ; j <= i ; ++j ) {
c += 1.0 * ( n - j - cnt ) / ( n - cnt - 1.0 ) * dd[j] + ( 1.0 - 1.0 * ( n - j - cnt ) / ( n - cnt - 1.0 ) ) * ( dd[j] + Dp( j - , cnt + ) ) ;
}
c *= 1.0 / i ;
}
return dp[i][cnt] ;
} double expectedDeliciousness( vector <int> d ){
n = (int) d.size() ;
for( int i = ; i < n ; ++i ) dd[i+] = ( double )d[i] ;
memset( vis , false , sizeof vis );
return Dp( n , );
}
};

Topcoder SRM656div1 250 ( 期望DP )的更多相关文章

  1. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  4. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  5. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  6. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  7. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  8. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  9. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

随机推荐

  1. git-bash下, 启动sshd

    今天发现git-shell下居然有sshd.exe, 尝试了一下,居然起来了.在windiwos下起sshd也是如此简单. #先编辑C:\Program Files (x86)\Git\etc\ssh ...

  2. Python3 install pip

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/12033910.html curl https://bootstrap.pypa.io/get-pip. ...

  3. 【leetcode】1095. Find in Mountain Array

    题目如下: (This problem is an interactive problem.) You may recall that an array A is a mountain array i ...

  4. IIS6、IIS7.5设置网站默认首页方法(Directory Listing Denied)

    这篇文章主要介绍了IIS6.IIS7.5设置网站默认首页方法,如果不设置访问目录就会提示Directory Listing Denied,就是不允许列出文档,为了安全网站都会设置不设置默认,需要的朋友 ...

  5. php array_push()函数 语法

    php array_push()函数 语法 作用:向第一个参数的数组尾部添加一个或多个元素(入栈),然后返回新数组的长度.博智达 语法:array_push(array,value1,value2.. ...

  6. asp.net能否上传文件夹下所有文件

    HTML部分 <%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="index.aspx. ...

  7. 【bzoj4551】[Tjoi2016&Heoi2016]树

    *题目描述: 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结 ...

  8. IE等浏览器兼容问题解决方案

    <meta http-equiv="X-UA-Compatible" content="IE=100" /> 在<head>标签中添加.

  9. Kaggle 房价预测问题参考资料

    作者的 Kaggle 主页:https://www.kaggle.com/pavansanagapati Tutorial - Housing Prices Model Prediction http ...

  10. G-sensor概述及常用概念整理【转】

    本文转载自:http://www.jianshu.com/p/d471958189a0?nomobile=yesG 本文对G-sensor进行整理,先介绍G-sensor的一些基本概念,再具体讲解BO ...