HDU-4332-Constructing Chimney
题目描述
用\(1*1*2\)的砖头摆出如图所示的烟囱,可以横着摆也可以竖着摆,求摆出\(n\)层高的烟囱会有多少种不同的方案。
Input
一共有\(T\)组数据。
每组数据包含一个\(n(1 \le n \le 1e9)\)。
Output
对于每组数据,输出方案数模\(1000000007\)。
Sample Input
2
1
2
Sample Output
Case 1: 2
Case 2: 49
看到这个数据范围就是矩阵优化递推了。。
很显然,对于一层的某个状态其中的某个格子放或者是不放可以利用状态压缩来\(DP\)。
\(DP\)转移方程为\(dp[i][j]+=dp[i-1][k],j可以转移到k\)。
其中,\(dp[i][j]\)表示第\(i\)层,状态为\(j\)的方案数。
那么,暴力转移的复杂度为\(O(n*256^2)\)。
由于每层的转移是唯一的,所以利用矩阵优化。
对于一个状态\(i\)我们暴力枚举其他状态\(j\),\(check\)能不能相进行转移。
若能转移\(g_i,_j\)为\(1\),否则为\(0\)。
构造出转移矩阵\(g=\)\(\begin{pmatrix}
0 & 0 & 1 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\end{pmatrix}\),利用矩阵快速幂求解。
时间复杂度降为\(O(log_n*256^3)\)。
有点小大,还有多组数据,不是很稳!!!
那么考虑剪枝。
我们把那张\(256*256\)的表打出来,发现矩阵的大部分是\(0\),也就是说,有大部分的状态是无用的,也就是说一些状态是永远也更新不到的,我们可以把这些状态去掉。
我们发现那些只有每层奇数个格子有的状态是无用的,可以直接少掉一半的复杂度,时间复杂度\(O(log_n*128^3)\)。
卡一卡常还是能过的。
其实还可以在进行优化,机房大佬\(gxy\)直接把代码优化到\(0ms\)。
据说是先缩到\(128*128\),再四个方向旋转去重,再对称和镜像去重减到只有十几种情况,打一个表解决。。。
orzorz...
代码如下
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define u64 unsigned long long
#define u32 unsigned int
#define reg register
#define Raed Read
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,x) for(reg int i=Head[x]; i; i=Nxt[i])
inline int Read() {
int res = 0, f = 1;
char c;
while (c = getchar(), c < 48 || c > 57)if (c == '-')f = 0;
do res = (res << 3) + (res << 1) + (c ^ 48);
while (c = getchar(), c >= 48 && c <= 57);
return f ? res : -res;
}
template<class T>inline bool Min(T &a, T const&b) {
return a > b ? a = b, 1 : 0;
}
template<class T>inline bool Max(T &a, T const&b) {
return a < b ? a = b, 1 : 0;
}
const int N=305,M=1e5+5,mod=1e9+7;
bool MOP1;
int n,m,cnt,Id[N];
struct Matrix {
int Num[N][N];
inline void clear(void) {
memset(Num,0,sizeof Num);
}
inline void Init(void) {
rep(i,1,cnt)Num[i][i]=1;
}
inline Matrix operator*(Matrix _)const {
Matrix Ans;
Ans.clear();
rep(i,1,cnt)rep(j,1,cnt)rep(k,1,cnt)Ans.Num[i][j]=(Ans.Num[i][j]+1ll*Num[i][k]*_.Num[k][j])%mod;
return Ans;
}
} us;
inline Matrix qpow(Matrix A,int k) {
Matrix res;
res.clear(),res.Init();
while(k) {
if(k&1)res=res*A;
A=A*A,k>>=1;
}
return res;
}
int Sum(int x) {
int tot=0;
while(x)x^=x&-x,tot++;
return tot;
}
bool check(int x,int y) {
int TT=x|y;
if(TT!=255)return false;
TT=x&y;
if(TT==255)return true;
while(TT&1)TT=1<<7|(TT>>1);
int tot=0;
rep(i,0,8) {
if(i<8&&(TT>>i)&1)tot++;
else if(tot&1)return false;
}
return true;
}
bool MOP2;
inline void _main(void) {
// cerr<<"M="<<(&MOP2-&MOP1)/1024.0/1024.0<<endl;
int T=Raed(),m=1<<8;
us.clear();
ret(i,0,m) {
if(Sum(i)&1)continue;
Id[i]=++cnt;
}
ret(i,0,m)if(Id[i])ret(j,0,m)if(Id[j]&&check(i,j))us.Num[Id[i]][Id[j]]=1;
us.Num[Id[255]][Id[255]]++;
int Case=0;
while(T--) {
int n=Read();
Matrix Ans=qpow(us,n);
printf("Case %d: %d\n",++Case,Ans.Num[Id[255]][Id[255]]);
}
}
signed main() {
#define offline1
#ifdef offline
freopen("chessboard.in", "r", stdin);
freopen("chessboard.out", "w", stdout);
_main();
fclose(stdin);
fclose(stdout);
#else
_main();
#endif
return 0;
}
HDU-4332-Constructing Chimney的更多相关文章
- HDU 1102 Constructing Roads, Prim+优先队列
题目链接:HDU 1102 Constructing Roads Constructing Roads Problem Description There are N villages, which ...
- HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)
HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...
- HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- hdu 1102 Constructing Roads Kruscal
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:这道题实际上和hdu 1242 Rescue 非常相似,改变了输入方式之后, 本题实际上更 ...
- HDU 1102(Constructing Roads)(最小生成树之prim算法)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Ja ...
- hdu 1102 Constructing Roads (Prim算法)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...
- hdu 1102 Constructing Roads (最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...
- [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- HDU 1102 Constructing Roads
Constructing Roads Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...
随机推荐
- socket认证客户端链接合法性
服务器端: #_*_coding:utf-8_*_ __author__ = 'Linhaifeng' from socket import * import hmac,os secret_key=b ...
- Linux上python3的安装和使用
centos7默认是装有python的,咱们先看一下 #检查python版本 [root@oldboy_python ~ 17:23:54]#python -V Python 2.7.5 但是 pyt ...
- TCP定时器 之 FIN_WAIT_2定时器
当TCP主动关闭一端调用了close()来执行连接的完全关闭时会执行以下流程,本端发送FIN给对端,对端回复ACK,本端进入FIN_WAIT_2状态,此时只有对端发送了FIN,本端才会进入TIME_W ...
- Mysql超强卸载
1.控制面板——>所有控制面板项——>程序和功能,卸载mysql server! 2.删除MySQL文件,尤其是ProgramData里面的隐藏文件MySQL,我当时没有删除,重新安装My ...
- 【数据算法】Java实现二叉树存储以及遍历
二叉树在java中我们使用数组的形式保存原数据,这个数组作为二叉树的数据来源,后续对数组中的数据进行节点化操作. 步骤就是原数据:数组 节点化数据:定义 Node节点对象 存储节点对象:通过Linke ...
- NavisWorks连接外部数据库,为模型附加属性
可以直接从Navisworks 文件连接到外部数据库,并在场景中的对象与数据库表中的字段之间创建链接以引入额外特性. 1.连接mdb数据库 新建数据连接 单击“新建”按钮,新建数据连接,输入一个名称, ...
- Java中的低级错误
1. 不能用“==”比较两个字符串内容相等. 2. 对list做foreach循环时,循环代码中不能修改list的结构. 3. ...
- 安装MySQL Enterprise Monitor
MySQL Enterprise Monitor是专门为MySQL数据库而设计的一款企业级监控,能非常好地与MySQL各方面特性相结合,包括:MySQL的关键性能指标.主机.磁 盘.备份.新特性相关以 ...
- Spring Boot 自定义注册 Servlet、Filter、Listener
前言 在 Spring Boot 中已经移除了 web.xml 文件,如果需要注册添加 Servlet.Filter.Listener 为 Spring Bean,在 Spring Boot 中有两种 ...
- centos7 系統vps安裝mysql5.6及設置本地遠程連接筆記
用xshell連接上vps 1,下载mysql的repo源 wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm su ...