题目描述

用\(1*1*2\)的砖头摆出如图所示的烟囱,可以横着摆也可以竖着摆,求摆出\(n\)层高的烟囱会有多少种不同的方案。

Input

一共有\(T\)组数据。

每组数据包含一个\(n(1 \le n \le 1e9)\)。

Output

对于每组数据,输出方案数模\(1000000007\)。

Sample Input

2
1
2

Sample Output

Case 1: 2
Case 2: 49

看到这个数据范围就是矩阵优化递推了。。

很显然,对于一层的某个状态其中的某个格子放或者是不放可以利用状态压缩来\(DP\)。

\(DP\)转移方程为\(dp[i][j]+=dp[i-1][k],j可以转移到k\)。

其中,\(dp[i][j]\)表示第\(i\)层,状态为\(j\)的方案数。

那么,暴力转移的复杂度为\(O(n*256^2)\)。

由于每层的转移是唯一的,所以利用矩阵优化。

对于一个状态\(i\)我们暴力枚举其他状态\(j\),\(check\)能不能相进行转移。

若能转移\(g_i,_j\)为\(1\),否则为\(0\)。

构造出转移矩阵\(g=\)\(\begin{pmatrix}
0 & 0 & 1 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\end{pmatrix}\),利用矩阵快速幂求解。

时间复杂度降为\(O(log_n*256^3)\)。

有点小大,还有多组数据,不是很稳!!!

那么考虑剪枝。

我们把那张\(256*256\)的表打出来,发现矩阵的大部分是\(0\),也就是说,有大部分的状态是无用的,也就是说一些状态是永远也更新不到的,我们可以把这些状态去掉。

我们发现那些只有每层奇数个格子有的状态是无用的,可以直接少掉一半的复杂度,时间复杂度\(O(log_n*128^3)\)。

卡一卡常还是能过的。

其实还可以在进行优化,机房大佬\(gxy\)直接把代码优化到\(0ms\)。

据说是先缩到\(128*128\),再四个方向旋转去重,再对称和镜像去重减到只有十几种情况,打一个表解决。。。

orzorz...

代码如下

#include <bits/stdc++.h>

using namespace std;

#define LL long long
#define u64 unsigned long long
#define u32 unsigned int
#define reg register
#define Raed Read
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,x) for(reg int i=Head[x]; i; i=Nxt[i]) inline int Read() {
int res = 0, f = 1;
char c;
while (c = getchar(), c < 48 || c > 57)if (c == '-')f = 0;
do res = (res << 3) + (res << 1) + (c ^ 48);
while (c = getchar(), c >= 48 && c <= 57);
return f ? res : -res;
} template<class T>inline bool Min(T &a, T const&b) {
return a > b ? a = b, 1 : 0;
}
template<class T>inline bool Max(T &a, T const&b) {
return a < b ? a = b, 1 : 0;
} const int N=305,M=1e5+5,mod=1e9+7; bool MOP1; int n,m,cnt,Id[N]; struct Matrix {
int Num[N][N];
inline void clear(void) {
memset(Num,0,sizeof Num);
}
inline void Init(void) {
rep(i,1,cnt)Num[i][i]=1;
}
inline Matrix operator*(Matrix _)const {
Matrix Ans;
Ans.clear();
rep(i,1,cnt)rep(j,1,cnt)rep(k,1,cnt)Ans.Num[i][j]=(Ans.Num[i][j]+1ll*Num[i][k]*_.Num[k][j])%mod;
return Ans;
}
} us; inline Matrix qpow(Matrix A,int k) {
Matrix res;
res.clear(),res.Init();
while(k) {
if(k&1)res=res*A;
A=A*A,k>>=1;
}
return res;
} int Sum(int x) {
int tot=0;
while(x)x^=x&-x,tot++;
return tot;
} bool check(int x,int y) {
int TT=x|y;
if(TT!=255)return false;
TT=x&y;
if(TT==255)return true;
while(TT&1)TT=1<<7|(TT>>1);
int tot=0;
rep(i,0,8) {
if(i<8&&(TT>>i)&1)tot++;
else if(tot&1)return false;
}
return true;
} bool MOP2; inline void _main(void) {
// cerr<<"M="<<(&MOP2-&MOP1)/1024.0/1024.0<<endl;
int T=Raed(),m=1<<8;
us.clear();
ret(i,0,m) {
if(Sum(i)&1)continue;
Id[i]=++cnt;
}
ret(i,0,m)if(Id[i])ret(j,0,m)if(Id[j]&&check(i,j))us.Num[Id[i]][Id[j]]=1;
us.Num[Id[255]][Id[255]]++;
int Case=0;
while(T--) {
int n=Read();
Matrix Ans=qpow(us,n);
printf("Case %d: %d\n",++Case,Ans.Num[Id[255]][Id[255]]);
}
} signed main() {
#define offline1
#ifdef offline
freopen("chessboard.in", "r", stdin);
freopen("chessboard.out", "w", stdout);
_main();
fclose(stdin);
fclose(stdout);
#else
_main();
#endif
return 0;
}

HDU-4332-Constructing Chimney的更多相关文章

  1. HDU 1102 Constructing Roads, Prim+优先队列

    题目链接:HDU 1102 Constructing Roads Constructing Roads Problem Description There are N villages, which ...

  2. HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)

    HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...

  3. HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  4. hdu 1102 Constructing Roads Kruscal

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:这道题实际上和hdu 1242 Rescue 非常相似,改变了输入方式之后, 本题实际上更 ...

  5. HDU 1102(Constructing Roads)(最小生成树之prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Ja ...

  6. hdu 1102 Constructing Roads (Prim算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  7. hdu 1102 Constructing Roads (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  8. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. HDU 1102 Constructing Roads

    Constructing Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  10. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

随机推荐

  1. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  2. CodeForces451E Devu and Flowers

    题目链接 问题分析 没有想到母函数的做法-- 其实直接看题思路挺简单的.发现如果每种花都有无限多的话,问题变得十分简单,答案就是\(s+n-1\choose n - 1\).然后发现\(n\)只有\( ...

  3. sqli-labs(42)

    0x01 喔? 熟悉的界面? 注册一下 但是好像不行了 那我们只有 嘻嘻看看页面了 也是以失败告终的  那我们该怎么办  我们来看看源码 我们看见login的页面未对 password进行任何的过滤 ...

  4. 4000余字为你讲透Codis内部工作原理

    一.引言 Codis是一个分布式 Redis 解决方案,可以管理数量巨大的Redis节点.个推作为专业的第三方推送服务商,多年来专注于为开发者提供高效稳定的消息推送服务.每天通过个推平台下发的消息数量 ...

  5. Kotlin的高阶函数和常用高阶函数

    Kotlin的高阶函数和常用高阶函数 文章来源:企鹅号 - Android先生 高阶函数的定义 将函数当做参数或者是返回值的函数 什么是高阶函数 可以看看我们常用的 函数: 首先我们可以知道, 是 的 ...

  6. 2018-2019-2 网络对抗技术 20165232 Exp 8 Web基础

    2018-2019-2 网络对抗技术 20165232 Exp 8 Web基础 原理与实践说明 1.实践内容概述 Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与 ...

  7. Android动态广播的注册与销毁

    一个内部类:BroadcastReceiver的子类,并定义收到广播之后的操作: class LockScreenBroadcastReceiver extends BroadcastReceiver ...

  8. Android动画View Animation与Drawable Animation

    Animations 一.Animations介绍 Animations是一个实现android UI界面动画效果的API,Animations提供了一系列的动画效果,可以进行旋转.缩放.淡入淡出等, ...

  9. 回归_最小二乘法(python脚本实现)

     python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  10. 浏览器端-3WSchool-JavaScript:JavaScript Boolean 对象

    ylbtech-浏览器端-3WSchool-JavaScript:JavaScript Boolean 对象 1.返回顶部 1. Boolean 对象 Boolean 对象表示两个值:"tr ...