0-1-Tree CodeForces - 1156D (并查集)
大意: 给定树, 边权为黑或白, 求所有有向路径条数, 满足每走过一条黑边后不会走白边.
这题比赛的时候想了个假算法, 还没发现.....
显然所求的路径要么全黑, 要么全白, 要么先全白后全黑, 所以可以用并查集将相邻同色边合并即可.
#include <iostream>
#include <random>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e6+10;
int n, sz1[N], sz2[N], fa1[N], fa2[N];
int f1(int x) {return fa1[x]?fa1[x]=f1(fa1[x]):x;}
int f2(int x) {return fa2[x]?fa2[x]=f2(fa2[x]):x;}
void add1(int x, int y) {if ((x=f1(x))!=(y=f1(y))) fa1[x]=y,sz1[y]+=sz1[x];}
void add2(int x, int y) {if ((x=f2(x))!=(y=f2(y))) fa2[x]=y,sz2[y]+=sz2[x];}
int main() {
scanf("%d", &n);
REP(i,1,n) sz1[i]=sz2[i]=1;
REP(i,2,n) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
w?add2(u,v):add1(u,v);
}
ll ans = 0;
REP(i,1,n) ans+=(ll)sz1[f1(i)]*sz2[f2(i)]-1;
printf("%lld\n", ans);
}
0-1-Tree CodeForces - 1156D (并查集)的更多相关文章
- CodeForces 593D Happy Tree Party [LCA+并查集]
题意:给一棵树,每条边有一个权值,给两种操作,第一种是询问y向下整除从a到b的最短路径中每条边的权值后y的值,第二种是改变某条边的权值. 思路:y的最大值为1e18,最多除大于等于2的数不超过60次即 ...
- Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)
题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...
- Codeforces 980 并查集/模拟贪心最小字典序 找规律/数去除完全平方因子 逆思维倍增预处理祖先标记点
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- Vladik and Entertaining Flags CodeForces - 811E (并查集,线段树)
用线段树维护每一块左右两侧的并查集, 同色合并时若不连通则连通块数-1, 否则不变 #include <iostream> #include <algorithm> #incl ...
- CodeForces - 893C-Rumor(并查集变式)
Vova promised himself that he would never play computer games... But recently Firestorm - a well-kno ...
- Minimum Spanning Tree.prim/kruskal(并查集)
开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可) prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图 #include< ...
- CodeForces - 1209D 并查集
题意: 有 n个不同的糖果,从 1到 n编号.有 k个客人.要用糖果招待客人.对于每个客人,这些糖果中恰有两个是其最爱.第 i个客人最爱的糖果编号是 xi和 y.将 k 个客人任意排列,他们按顺序去拿 ...
- 2017 ACM/ICPC 新疆赛区 I 题 A Possible Tree 带权并查集
传送门 题意:给定一棵带权树的形态, 但是并不知道每天条边的具体权重. 然后给m个信息, 信息格式为u v val, 表示在树上u 到 v 的路径上经过的边的权重的异或和为val, 问前面最多有多少个 ...
- Codeforces 1166F 并查集 启发式合并
题意:给你一张无向图,无向图中每条边有颜色.有两种操作,一种是询问从x到y是否有双彩虹路,一种是在x到y之间添加一条颜色为z的边.双彩虹路是指:如果给这条路径的点编号,那么第i个点和第i - 1个点相 ...
随机推荐
- (Java多线程系列六)join()的用法和线程的优先级
join()的用法和线程的优先级 1.join()的用法 join()作用就是让其他线程处于等待状态 先看一个需求:创建一个线程,子线程执行完毕后,主线程才能执行 public class JoinT ...
- python学习之路(19)
匿名函数 当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便. 在Python中,对匿名函数提供了有限支持.还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x) ...
- pandas mean 返回 inf
In [12]: np.finfo(np.float16).max Out[12]: 65500.0 In [15]: df['a']=np.array([656]*100) In [16]: df[ ...
- nginx负载均衡 理解与测试
Nginx负载均衡概述 Web服务器,直接面向用户,往往要承载大量并发请求,单台服务器难以负荷,我使用多台WEB服务器组成集群,前端使用Nginx负载均衡,将请求分散的打到我们的后端服务器集群中,实现 ...
- java 调用腾讯云短信api
依赖: <!--腾讯短信依赖--> <dependency> <groupId>com.github.qcloudsms</groupId> <a ...
- 第三周课程总结&实验报告
课程总结 在这周对Java进行了更深层次的学习,Java的学习也变得越来越困难而有趣,加入了一些新的构造新的方法,还学习了一些简化代码的方式. 面向对象的基本概念 对于面向对象的程序设计有三个主要特征 ...
- oracle字段like多个条件
写oracle sql时有时候会有 and (字段 like ‘匹配串1’or 字段 like ‘匹配串2’or ...)这样的情况出现,下面提供一个简洁点的解决方案: and REGEXP_LIKE ...
- android打包生成apk时自定义文件名版本号。自定义项目字段等等
早期的AS2.0版本左右中这样配置: app---->build.gradle中设置 applicationVariants.all { variant -> variant.output ...
- Icon 图标
Icon 图标 提供了一套常用的图标集合. ¶使用方法 直接通过设置类名为 el-icon-iconName 来使用即可.例如: <i class="el-icon-edit" ...
- foundation DB问题
1. go get github.com/apple/foundationdb/bindings/go/src/fdb # github.com/apple/foundationdb/bindings ...