speike
speike
题目描述
众所周知,Speike 狗是一条特别喜欢追着Tom 打的狗。
现在,Tom 又把Speike 惹生气了,现在Speike 需要跨越千山万水找Tom 报仇。
Speike 所在的世界可以看成是一个无穷大的平面,平面由一个平面直角坐标系确定。在平面上有许多不相交的矩形障碍,矩形的四边平行于坐标轴。
Speike 需要从 (0,0)(0,0) 出发,在尽量短的时间内跑到 (X_t,0)(Xt,0),也就是Tom 在的位置。
出题人规定,Speike 只能沿着平行于坐标轴的方向运动,且不能进入矩形障碍的内部,但是可以在障碍边界上移动。
所有障碍的横坐标都在 [0,X_t][0,Xt] 之内。保证矩形不相交(即没有公共面积),也不会退化成线段或者点。
Speike 的智商不是很高,因此他需要你帮忙设计一条最短的路线。当然,你只需要告诉他路线的长度就行了。
输入格式
第一行一个整数 nn,代表障碍的个数。
第二行一个整数 X_tXt,代表终点的横坐标。
第三行开始,共 nn 行,每行4 个整数 a,b,c,da,b,c,d,代表每个矩形的某两个相对的顶点的坐标为 (a,b)(a,b) 和 (c,d)(c,d)
输出格式
共一行,一个整数,代表最短路线的长度。
样例
共下发三个样例,分别与第2; 4; 11 号测试点的数据范围与特性一致。
数据范围与提示
| 测试点编号 | n的范围 | 特殊性质 |
|---|---|---|
| 1 | n \le 0n≤0 | 无 |
| 2,3 | n \le 1n≤1 | 无 |
| 4,5,6 | n \le 20n≤20 | a, b, c, d, X_{t} \in\left[-10^{3}, 10^{3}\right]a,b,c,d,Xt∈[−103,103] |
| 7,8,9,10 | n \le 200n≤200 | a, b, c, d, X_{t} \in\left[-10^{5}, 10^{5}\right]a,b,c,d,Xt∈[−105,105] |
| 11,12,13 | n \le 2000n≤2000 | a, b, c, d, X_{t} \in\left[-10^{3}, 10^{3}\right]a,b,c,d,Xt∈[−103,103] |
| 14,15 | n \le 2000n≤2000 | 无 |
| 16,17 | n \le 10^5n≤105 | 所有矩形都与xx轴相交 |
| 18,19,20 | n \le 5 \times 10^5n≤5×105 | nn有一定梯度 |
-10^{8} \leq a, c \leq X_{t} \leq 10^{8},-10^{8} \leq b, d \leq 10^{8}, n \in\left[0,10^{5}\right]−108≤a,c≤Xt≤108,−108≤b,d≤108,n∈[0,105]。
保证矩形不相交(即没有公共面积),每个矩形不会退化成线段或者点,且横坐标都在 [0,X_t][0,Xt] 之内。
来源
CSP-S 2019模拟 长沙一中2
Solution
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 1000006
#define lb(x) lower_bound(Y+1,Y+m+1,x)-Y
#define mid ((l+r)>>1)
#define ls k<<1
#define rs k<<1|1
using namespace std;
int n,ed,Y[maxn],f[maxn][],t;
int tr[maxn*];
struct node{
int a,b,c,d;
}s[maxn];
bool cmp(node A,node B){
return A.a<B.a;
}
void add(int k,int l,int r,int li,int ri,int v){
if(l>=li&&r<=ri){tr[k]=v;return;}
if(li<=mid)add(ls,l,mid,li,ri,v);
if(ri>mid)add(rs,mid+,r,li,ri,v);
}
void ask(int k,int l,int r,int pl){
t=max(t,tr[k]);
if(l==r)return;
if(pl<=mid)return ask(ls,l,mid,pl);
return ask(rs,mid+,r,pl);
}
int main(){
cin>>n>>ed;
for(int i=;i<=n;i++){
scanf("%d%d%d%d",&s[i].a,&s[i].b,&s[i].c,&s[i].d);
if(s[i].a>s[i].c)swap(s[i].a,s[i].c);
if(s[i].b>s[i].d)swap(s[i].b,s[i].d);
Y[i]=s[i].d,Y[i+n]=s[i].b;
} int N=n+n+;Y[N]=;
sort(Y+,Y+N+);int m=unique(Y+,Y+N+)-Y-;
s[++n]=(node){ed,,ed,};
sort(s+,s+n+,cmp);
for(int i=;i<=n;i++){
t=;ask(,,m,lb(s[i].b));
f[i][]=min(f[t][]+abs(s[t].b-s[i].b),f[t][]+abs(s[t].d-s[i].b));
t=;ask(,,m,lb(s[i].d));
f[i][]=min(f[t][]+abs(s[t].b-s[i].d),f[t][]+abs(s[t].d-s[i].d));
add(,,m,lb(s[i].b),lb(s[i].d),i);
}
cout<<f[n][]+ed<<endl;
return ;
}
speike的更多相关文章
- Vue 项目架构设计与工程化实践
来源 文中会讲述我从0~1搭建一个前后端分离的vue项目详细过程 Feature: 一套很实用的架构设计 通过 cli 工具生成新项目 通过 cli 工具初始化配置文件 编译源码与自动上传CDN Mo ...
随机推荐
- reuseaddr和点对点聊天
解决绑定失败 在测试时,经常会出现绑定错误,bind error: Address already in use 这里只要指定一下socket的reuseaddr属性即可解决 int on=1; if ...
- Win7 VSCode 离线安装Rust语言及环境配置
前置依赖 装过Visual Studio或Visual Studio Build Tool 2015 下载Rust离线安装包 https://forge.rust-lang.org/other-ins ...
- dubbo入门和springboot集成dubbo小例子
从零开始搭建springboot-dubbo的例子 Dubbo 是一个分布式服务框架,致力于提供高性能和透明化的 RPC 远程服务调用方案,以及 SOA 服务治理方案 一. Dubbo的简单介绍 1. ...
- 【报错】Validation failed for object='userLogin'. Error count: 1
提交表单之后: Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing ...
- response.getWriter()和jsp中的out对象的区别
(1) out和response.getWriter属于的类不同,前者是JspWriter,后者是java.io.PrintWriter.而JspWriter是一个抽象类, PrintWriter是一 ...
- flex布局相关用法
/* pages/classic/classic.wxss */ .chunk { /* 行内元素可设置但是设置了flex,无效了 *//* display: inline-block; */ wid ...
- 浅谈Linux下的rpm
虽然现在很多人都使用yum去替代rpm了,但是rpm在一些特殊场合下还是有其作用的,比如查询跟验证已安装的rpm包,rpm全称Redhat Package Manager,是一种用于互联网下载包的 ...
- C# 下载PDF文件(http与ftp)
1.下载http模式的pdf文件(以ASP.NET为例,将PDF存在项目的目录下,可以通过http直接打开项目下的pdf文件) #region 调用本地文件使用返回pdfbyte数组 /// < ...
- mySql配置在nodejs中使用
mySql安装完成后,配置链接nodejs项目中的数据库. 1.测试是否安装成功. 2.use nodejs使用nodejs 3.设置数据源 5.exit
- C# DataTable、实体相互转换
public static T GetEntity<T>(DataTable table) where T : new() { T entity = new T(); foreach (D ...