洛谷 P4196 [CQOI2006]凸多边形 (半平面交)
题目链接:P4196 [CQOI2006]凸多边形
题意
给定 \(n\) 个凸多边形,求它们相交的面积。
思路
半平面交
半平面交的模板题。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e3 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
inline void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
db ang(Point a) {
return acos((a.dis() * dis()) / dot(a));
}
};
typedef Point Vector;
Point p[maxn], ip[maxn];
class Line {
public:
Point s, e;
db angle;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
inline void input() {
s.input();e.input();
}
bool operator<(const Line &a) const {
Line l = a;
if(dcmp(angle - l.angle) == 0) {
return l.toLeftTest(s) == 1;
}
return angle < l.angle;
}
void get_angle() {
angle = atan2(e.y - s.y, e.x - s.x);
}
int toLeftTest(Point p) {
if((e - s).cross(p - s) > 0) return 1;
else if((e - s).cross(p - s) < 0) return -1;
return 0;
}
int linecrossline(Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 0;
}
return 1;
}
return 2;
}
Point crosspoint(Line l) {
db a1 = (l.e - l.s).cross(s - l.s);
db a2 = (l.e - l.s).cross(e - l.s);
db x = (s.x * a2 - e.x * a1) / (a2 - a1);
db y = (s.y * a2 - e.y * a1) / (a2 - a1);
if(dcmp(x) == 0) x = 0;
if(dcmp(y) == 0) y = 0;
return Point(x, y);
}
};
Line l[maxn], q[maxn];
db half_plane(int cnt) {
sort(l + 1, l + 1 + cnt);
// for(int i = 1; i <= cnt; ++i) {
// cout << l[i].s.x << " " << l[i].s.y << " ";
// cout << l[i].e.x << " " << l[i].e.y << endl;
// }
int tmp = 1;
for(int i = 2; i <= cnt; ++i) {
if(dcmp(l[i].angle - l[tmp].angle) == 1) l[++tmp] = l[i];
}
cnt = tmp;
int head = 1, tail = 2;
q[1] = l[1], q[2] = l[2];
for(int i = 3; i <= cnt; ++i) {
while(head < tail && l[i].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) {
--tail;
}
while(head < tail && l[i].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) {
++head;
}
q[++tail] = l[i];
}
while(head < tail && q[head].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) {
--tail;
}
while(head < tail && q[tail].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) {
++head;
}
if(tail - head + 1 <= 2) {
return 0.0;
}
tmp = 0;
for(int i = head; i < tail; ++i) {
ip[++tmp] = q[i].crosspoint(q[i + 1]);
}
ip[++tmp] = q[head].crosspoint(q[tail]);
db ans = 0;
for(int i = 3; i <= tmp; ++i) {
ans += (ip[i - 1] - ip[1]).cross(ip[i] - ip[1]);
}
return ans * 0.5;
}
int main() {
int n;
scanf("%d", &n);
int cnt = 0;
for(int i = 1; i <= n; ++i) {
int m;
scanf("%d", &m);
for(int i = 0; i < m; ++i) {
p[i].input();
if(i) {
l[++cnt].e = p[i];
l[cnt].s = p[i - 1];
l[cnt].get_angle();
}
}
l[++cnt].e = p[0];
l[cnt].s = p[m - 1];
l[cnt].get_angle();
}
printf("%.3lf\n", half_plane(cnt));
return 0;
}
洛谷 P4196 [CQOI2006]凸多边形 (半平面交)的更多相关文章
- bzoj 2618: [Cqoi2006]凸多边形 [半平面交]
2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...
- BZOJ - 2618 凸多边形 (半平面交)
题意:求n个凸多边形的交面积. 半平面交模板题. #include<bits/stdc++.h> using namespace std; typedef long long ll; ty ...
- P4196 [CQOI2006]凸多边形 半平面交
\(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...
- P4196 [CQOI2006]凸多边形
传送门 半平面交的讲解 然而这个代码真的是非常的迷--并不怎么看得懂-- //minamoto #include<bits/stdc++.h> #define fp(i,a,b) for( ...
- 洛谷 P5057 [CQOI2006]简单题 题解
P5057 [CQOI2006]简单题 题目描述 有一个 n 个元素的数组,每个元素初始均为 0.有 m 条指令,要么让其中一段连续序列数字反转--0 变 1,1 变 0(操作 1),要么询问某个元素 ...
- 洛谷P5057 [CQOI2006]简单题(线段树)
题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...
- [洛谷P5057][CQOI2006]简单题
题目大意:有一个长度为$n$的$01$串,两个操作: $1\;l\;r:$把区间$[l,r]$翻转($0->1,1->0$) $2\;p:$求第$p$位是什么 题解:维护前缀异或和,树状数 ...
- 洛谷 P5057 [CQOI2006]简单题(树状数组)
嗯... 题目链接:https://www.luogu.org/problem/P5057 首先发现这道题中只有0和1,所以肯定与二进制有关.然后发现这道题需要支持区间更改和单点查询操作,所以首先想到 ...
- 洛谷 P5057 [CQOI2006]简单题 (树状数组,位运算)
题意:有一个长度为\(n\)的数组,进行\(m\)次操作,每次读入一个值\(t\),如果\(t=1\),则将区间\([l,r]\)的数字反转,若\(t=2\),则查询下标为\(i\)的值. 题解:树状 ...
随机推荐
- Java 线程基础
Java 线程基础
- PAT 1036 Boys vs Girls (25 分)
1036 Boys vs Girls (25 分) This time you are asked to tell the difference between the lowest grade ...
- Tomcat_shutdown
@echo off echo 执行开始时间 date/t time/t echo *********************************************** echo 正在关闭To ...
- laravel新增路由文件
除去原有路由文件,有时为方便路由管理,我们可以新增独立路由文件,如:针对管理后台的路由文件. 1.在routes文件夹下创建新路由文件admin.php 2.在app\Providers\RouteS ...
- 使用LoadRunner监控Apache
前提本文使用的是lampp环境下自带的Apache服务 一.查看文件 查看文件确保目录中有Apache,我在这里使用的是用xampp自带apache [root@besttest ~]# ll 二.配 ...
- editplus 正则表达式 分组替换
editplus :zz正则表达式替换 /开头的api+换行符 替换为 /开头的api+空格 \1后有空格 editplus :zz正则表达式替换 行首两个数字+换行符 替换为 行首两个数字+空 ...
- Spring入门之生命周期
好几日没有读东西了,今天本来要读mybatis原理部分,但是看到作者讲,只是学会用不用学那么深,遂直接开干spring,工作中一直用springboot,框架都是领导搭好的,每天的任务就是增删改查,挺 ...
- Sql Server 表结构相关
1.库表列信息 --取所有库 SELECT Name FROM Master..SysDatabases ORDER BY Name --查询所有表 select name from 库名..syso ...
- 【Movie】绿皮书
今天和室友一起去看了<绿皮书>,一部获得奥斯卡的电影. 起初我是没什么太大期望的,纯粹是因为特价票10块钱,加上身边一个小姐姐的力荐. 看完我觉得,啊不愧是奥斯卡电影啊.推荐. 以下可能会 ...
- v-distpicker 一个好用的三级联动的插件
// 引入插件npm install v-distpicker --save import VDistpicker from 'v-distpicker' Vue.component('v-distp ...