4----COM:a Generative Model for group recommendation(组推荐的一种生成模型)
1、摘要:
组推荐的一个挑战性问题:因为不同组的成员就有不同的偏好,如何平衡这些组员的偏好是一个难以解决的问题。
在本文中,作者提出了一个COM的概率模型来建立组活动生成过程。
直觉上:
一个组中的用户可能有不同的影响,在不同主题影响力不同,如对看电影有权威的用户在音乐上影响力可能低。
群体中的用户可能作为组员的表现和作为独立个体表现不一样。
COM基于这些直觉,融合组成员之间的偏好成为组偏好来进行推荐。
2、介绍
传统的组推荐主要分为基于memory和基于model两类,这两类都忽略了组成员之间的交互,并使用简单的方法来融合成员的偏好。
COM创新点:
(1)每个组与几个主题相关,例如,野餐组与徒步旅行和餐饮主题相关,而由家庭组成的电影观看组可能与浪漫喜剧主题相关。一个群组的项目选择不仅受相关主题影响还受成员的个人考虑的影响,例如选择去电影院看电影受电影影响还受影院距离影响。
(2)群组成员作为组成员表现和个人不同,如独处喜欢看恐怖电影,与妻子喜欢看浪漫电影。
(3)不同的用户在群体中作出决策时有不同见解,见解程度和主题相关,电影迷可能对电影观看群体作出决定很重要,但在餐饮群体中不是很重要。
COM对一个组的生成过程建模如下:
每个组在潜在主题上具有多项式分布,这些主题吸引一组用户加入。
考虑1:一个用户的项目选择受主题影响也受自身考虑的影响。
考虑2:一个用户的项目选择受群组的主题影响而不是个人的主题。
考虑3:一个组的决策受全体成员的影响,若某个成员是专家则其选择具有更大的权重。
本文贡献:
1、提出一个生成模型COM建立一个群组对项目选择的过程,考虑成员的主题影响和成员的群组行为。
2、提出一个基于COM的群组推荐方法,考虑用户选择历史和用户个人考虑。
3、实验
3、相关工作:
(1)推荐系统:基于内容的、基于CF、基于混合推荐系统
(2)群组推荐:偏好融合方法和评分融合方法
4、模型:
四个直觉:
直觉1:每一组都与多个匹配度相关的主题相关,例如,野餐组比健美话题更适合徒步旅行和就餐话题。一个小组的话题吸引用户加入这个团体。
直觉2:当选择一个项目时,组中的用户有两个考虑因素:主题、个人因素。“RST”是主题,即,用户倾向于选择与组主题相关的项,这导致她加入组。第二个是用户对内容因素的个人考虑,如场地推荐的地理距离、电影推荐的电影列表等。这些因素中的大多数是用户规范,不能被主题捕获。此外,不同的用户在组话题和个人考虑内容因素之间进行不同的交换:一些用户倾向于选择与组话题最匹配的项目,而另一些用户可能认为个人考虑更重要。
直觉3:用户在选择特定组中的项目作为成员时,以及在选择项目作为个人时,行为各异。在一个组中,用户倾向于将她的偏好与组的主题相匹配。
直觉4:一个群体对一个候选项目的偏好是由群体成员的偏好决定的[3, 8 ]。除此之外,我们利用以下新的直觉:每个成员对组中项目选择的影响是依赖于主题的。
直觉1:θg :组g的主题偏好。
ΦZU z:用户U和主题Z的相关性.
ΦZI z:项目I和主题Z的相关性.
ΦZI z,i:给定主题z,i 项目被选择的可能性。
ΦZU z,u:主题z对用户u的吸引力或用户u对z的专长能力。
直觉2:
使用开关变量c来控制用户u是根据组的主题还是个人因素来选择一个项目的。当c=1时,项目被选中是基于主题相关的(满足分布ΦZI )。当 c = 0时,项目被选择是基于个人因素(满足分布ΦUI)。
c是满足伯努利分布的,参数λu表示组主题影响,( 1-λu )表示受个人因素影响,伯努利λu有一个beta先验 γ = { γ,γt } 。
群体事件生成过程如下:
4----COM:a Generative Model for group recommendation(组推荐的一种生成模型)的更多相关文章
- 深度学习课程笔记(二)Classification: Probility Generative Model
深度学习课程笔记(二)Classification: Probility Generative Model 2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw ...
- 转Generative Model 与 Discriminative Model
没有完全看懂,以后再看,特别是hmm,CRF那里,以及生成模型产生的数据是序列还是一个值,hmm应该是序列,和图像的关系是什么. [摘要] - 生成模型(Generative Model) :无 ...
- Generative Model 与 Discriminative Model
[摘要] - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测 - 判别模型(Discriminative Model): ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- 生成模型(Generative Model)Vs 判别模型(Discriminative Model)
概率图分为有向图(bayesian network)与无向图(markov random filed).在概率图上可以建立生成模型或判别模型.有向图多为生成模型,无向图多为判别模型. 判别模型(D ...
- Generative model 和Discriminative model
学习音乐自动标注过程中设计了有关分类型模型和生成型模型的东西,特地查了相关资料,在这里汇总. http://blog.sina.com.cn/s/blog_a18c98e50101058u.html ...
- A Neural Influence Diffusion Model for Social Recommendation 笔记
目录 一.摘言 二.杂记 三.问题定义和一些准备工作 四.模型真思想 五.实验部分 六.参考文献 一.摘言 之前协同过滤利用user-item交互历史很好的表示了user和item.但是由于用户行为的 ...
- Generative Model vs Discriminative Model
In this post, we are going to compare the two types of machine learning models-generative model and ...
- 论文阅读 A Data-Driven Graph Generative Model for Temporal Interaction Networks
13 A Data-Driven Graph Generative Model for Temporal Interaction Networks link:https://scholar.googl ...
随机推荐
- Python更换pip源,更换conda源
更换pip源: 1.在windows文件管理器中,输入 %APPDATA% 2.在该目录下新建pip文件夹,然后到pip文件夹里面去新建个pip.ini文件 3.在新建的pip.ini文件中输入以下内 ...
- 动态库连接器–动态库链接信息(Mach-O文件格式和程序从加载到执行过程)
section cmd 说明 举例 __text 主程序代码 __stubs 用于动态库链接的桩 __stub_helper 用于动态库链接的桩 __cstring 常亮字符串符号表描述信 ...
- testng+selnium+eclipse的测试框架运用
一:TestNG在Eclipse中的安装(1)点击eclipse中的Help->Install New Software (2)点击[Add]按钮,输入相应的地址(3)勾选加载出来的TestNG ...
- 快速掌握ajax!
ajax是什么? ajax——asynchronous JavaScript and xml:异步的js和xml 它能使用js访问服务器,而且是异步访问 服务器给客户端的响应一般是整个页面,一个htm ...
- Anaconda3 安装报错 bunzip2: command not found
报错信息 Anaconda3-5.3.1-Linux-x86_64.sh: line 353: bunzip2: command not found tar: This does not look l ...
- SM32 USART与USB接收不定数据方法,标准库、HAL库都适用
很多时候,我们使用串口或USB接收数据时,往往不知道PC端会发多长的数据下来, 为了解决这个不定数据接收问题,在此各提供一个解决思路. 串口数据不定接收: 由于STM32单片机带IDLE中断,所以利用 ...
- 极路由设置共享磁盘密码、跨网访问samba服务
极路由插上移动硬盘后会自动建立samba服务器,但我们没法去配置哪些盘符需要密码,这样只要在同一个wifi下的电脑都能去访问这些东西了,比较弱智.另外我还想再公司中去读写这个移动硬盘. 设置密码 首先 ...
- 自己定义控件-MultipleTextView(自己主动换行、自己主动补齐宽度的排列多个TextView)
一.功能: 1.传入一个 List<String> 数组,控件会自己主动加入TextView,一行显示不下会自己主动换行.而且把上一行末尾的空白通过拉伸而铺满. 2.配置灵活 <co ...
- IntegerToBinaryString
IntegerToBinaryString 方法写的非常的巧妙:佩服佩服! package com.stono.jdk; public class IntegerToBinaryString { pu ...
- JavaSE入门学习24:Java面向对象补充
一Java中的Object类 Object类是全部Java类的父类.假设一个类没有使用extendskeyword明白标识继承另外一个类,那么这个类默认 继承Object类. public class ...