Day1下午解题报告
预计分数:0+30+30=60
实际分数:0+30+40=70
T1水题(water)
贪心,按长度排序,
对于第一幅牌里面的,在第二个里面,找一个长度小于,高度最接近的牌
进行覆盖。
考场上的我离正解只差一个小于号之遥。。。。。。。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <set>
using namespace std;
int n;
multiset <int> s;
struct node {int x,y;} a[],b[];
int cmp(node i,node j) {return i.x<j.x;}
int main()
{
freopen("water.in","r",stdin);
freopen("water.out","w",stdout);
int T;
T=;
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d%d",&a[i].x,&a[i].y);
for(int i=;i<n;i++) scanf("%d%d",&b[i].x,&b[i].y);
sort(a,a+n,cmp);
sort(b,b+n,cmp);
s.clear();
int k=,ans=;
for(int i=;i<n;i++)
{
while(a[i].x>=b[k].x&&k<n)
{
s.insert(b[k].y);
k++;
}
if(s.empty())continue;
multiset<int>::iterator it=s.upper_bound(a[i].y);
if (it==s.begin()) continue; it--;
ans++; s.erase(it);
}
printf("%d\n",ans);
}
return ;
}
T2下午梦境(dream)
不会做,手玩30分
正解
dp||爆搜
1 2 4 8 ...
1 3 7 15 31 ...
int(log(n)/log(2))+1
方案总数:dp,搜索
2^0+2^1+...+2^k = O(n)
k=log(n)
dfs(Max,Sum,S) // Max金币最大值,Sum所有金币的和,S金币的数量
dp[i][j][k] 当前有i个金币,金币和是j,最大的金币k。
if (dp[i][j][k]) 枚举下一枚金币是啥。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=1e6;
inline int read()
{
char c=getchar();int flag=,x=;
while(c<''||c>'') {if(c=='-') flag=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-,c=getchar();return x*flag;
}
int n;
int main()
{
//freopen("dream.in","r",stdin);
//freopen("dream.out","w",stdout);
n=read();
if(n==) printf("0 1");
if(n==) printf("1 1");
if(n==) printf("2 1");
if(n==) printf("2 1");
if(n==) printf("3 1");
if(n==) printf("3 2");
if(n==) printf("3 2");
if(n==) printf("3 1");
if(n==) printf("4 8");
if(n==) printf("4 8");
if(n==) printf("4 8");
if(n>) printf("5 6");
return ;
}
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
int n,sum,ans,dp[][],DP[][],i,j,k,l;
int main()
{
freopen("dream.in","r",stdin);
freopen("dream.out","w",stdout);
scanf("%d",&n);
sum=int(log(n)/log()+0.000000001)+;
dp[][]=;
for (i=; i<sum; i++)
{
for (j=; j<=n; j++)
for (k=; k<=n; k++)
if (dp[j][k])
for (l=k+; l<=j+; l++)
DP[min(n,j+l)][l]+=dp[j][k];
for (j=; j<=n; j++) for (k=; k<=n; k++) {dp[j][k]=DP[j][k];DP[j][k]=;}
}
for (j=; j<=n; j++) ans+=dp[n][j];
cout<<sum<<' '<<ans;
return ;
}
标程
T3动态规划(dp)
题目描述
LYK在学习dp,有一天它看到了一道关于dp的题目。
这个题目是这个样子的:一开始有n个数,一段区间的价值为这段区间相同的数的对数。我们想把这n个数切成恰好k段区间。之后这n个数的价值为这k段区间的价值和。我们想让最终这n个数的价值和尽可能少。
例如6个数1,1,2,2,3,3要切成3段,一个好方法是切成[1],[1,2],[2,3,3],这样只有第三个区间有1的价值。因此这6个数的价值为1。
LYK并不会做,丢给了你。
输入输出格式
输入格式:
第一行两个数n,k。
接下来一行n个数ai表示这n个数。
输出格式:
一个数表示答案。
输入输出样例
说明
对于30%的数据n<=10。
对于60%的数据n<=1000。
对于100%的数据1<=n<=100000,1<=k<=min(n,20),1<=ai<=n。
其中有30%的数据满足ai完全相同均匀分布在所有数据中。
考场上我想出60分的dp了
但是我感觉不对,直觉告诉我一定不对,。
但实际上是对的mmp。。。。。
打了30分暴力走人,,
正解:
dp[i][j] 1~i 切了j刀,的最优解
dp[i][j]=min{dp[k][j-1]+sum(k+1,i)}
可以证明这个转移方程具有单调性
20*n^2的简单dp -> 在固定j的情况下 随着i的增大,k不降 -> 分治求dp值
#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 1000011
#define min(x, y) ((x) < (y) ? (x) : (y))
#define max(x, y) ((x) > (y) ? (x) : (y))
using namespace std;
int n, q, ans;
int f[N]; struct node
{
int x, y, z;
}p[N], t[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline bool cmp(node x, node y)
{
return x.z > y.z;
} inline int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} inline bool check(int k)
{
int i, j, x, y, lmin, lmax, rmin, rmax;
for(i = ; i <= n + ; i++) f[i] = i;
for(i = ; i <= k; i++) t[i] = p[i];
std::sort(t + , t + k + , cmp);
lmin = lmax = t[].x;
rmin = rmax = t[].y;
for(i = ; i <= k; i++)
{
if(t[i].z < t[i - ].z)
{
if(find(lmax) > rmin) return ;
for(j = find(lmin); j <= rmax; j++)
f[find(j)] = find(rmax + );
lmin = lmax = t[i].x;
rmin = rmax = t[i].y;
}
else
{
lmin = min(lmin, t[i].x);
lmax = max(lmax, t[i].x);
rmin = min(rmin, t[i].y);
rmax = max(rmax, t[i].y);
if(lmax > rmin) return ;
}
}
// cout<<find(1)<<endl;
if(find(lmax) > rmin) return ;
return ;
} int main()
{
freopen("number.in","r",stdin);
freopen("number.out","w",stdout);
int i, x, y, mid;
n = read();
q = read();
for(i = ; i <= q; i++)
p[i].x = read(), p[i].y = read(), p[i].z = read();
x = , y = q;
//cout<<check(2)<<endl;
//return 0;
ans = q + ;
while(x <= y)
{
mid = (x + y) >> ;
if(check(mid)) ans = mid, y = mid - ;
else x = mid + ;
}
printf("%d\n", ans);
return ;
}
Day1下午解题报告的更多相关文章
- ZROI Day1 比赛解题报告
ZROI Day1 比赛解题报告 版权原因不提供题面相关信息 序 前天晚上搞得比较晚,然后早上做题很没状态,刚看到T1发现没什么思路就有点慌,赶紧看了看T2,T3, 发现T3暴力很好打,T2想了一想可 ...
- NOIp2016 Day1&Day2 解题报告
Day1 T1 toy 本题考查你会不会编程. //toy //by Cydiater //2016.11.19 #include <iostream> #include <cstd ...
- noip2011提高组day1+day2解题报告
Day1 T1铺地毯https://www.luogu.org/problem/show?pid=1003 [题目分析] 全部读入以后从最后一个往前找,找到一个矩形的范围覆盖了这个点,那这个矩形就是最 ...
- 「雅礼集训 2017 Day1」 解题报告
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...
- Day4下午解题报告
预计分数:30+30+0=60 实际分数:30+30+10=70 稳有个毛线用,,又拿不出成绩来,, T1 https://www.luogu.org/problem/show?pid=T15626 ...
- Day1上午解题报告
预计分数:100+60+0=160 实际分数:100+30+20=150 T1立方数(cubic) 题目描述 LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数 ...
- Day3下午解题报告
预计分数:20+40+30=90 实际分数:40+90+60=190 再次人品爆发&&手感爆发&&智商爆发 谁能告诉我为什么T1数据这么水.. 谁能告诉我为什么T2数据 ...
- Day2下午解题报告
预计分数:100+100+30=230 实际分数:100+100+30=230人品爆发&&智商爆发&&手感爆发 T3数据好水,,要是把数组开大一点的话还能多得10分,, ...
- Day5下午解题报告1
预计分数:100+60+30=190 实际分数:100+60+30=190 终于有一道无脑T1了哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈 ...
随机推荐
- SQL--去除字符串空格、截取字符串
1
- DNS Prefetching
For Developers > Design Documents > DNS Prefetching 目录 1 Problem 2 Solution 3 Architectur ...
- NetBios, NetBios over TCP/IP, SMB 之间的关系
首先提到的是NetBios,NetBios是Network Basic Input/Output System的缩写,提供了一种允许局域网内不同电脑能够通信的功能.严格来说,NetBios是一套API ...
- 使用sysbench 对mysql进行性能测试
使用sysbench 对mysql进行性能测试 sysbench是一个开源的.模块化的.跨平台的多线程性能测试工具,可以用来进行CPU.内存.磁盘I/O.线程.数据库的性能测试.目前支持的数据库有My ...
- elementui的时间选择器开始时间和结束时间的限制
开始时间不能大于结束时间 html代码部分 方法部分 开始时间和结束时间可以选同一天 <template> <div class="range-wrapper"& ...
- vue中的分页操作
首先,先看分页的代码: 这里还需要进行操作: 1.分页操作主要传递俩个数据,total和pagenum,一个显示当前页面共有多少条数据,一个是翻页后的操作,看列表的数据能不能跟着改变,在进页面发送请求 ...
- TCP服务器如何区分不同的用户
CS架构:使用SOCKET(一般是一个整数),当服务器侦听到连接请求的时候,accept会返回一个SOCKET(用于识别不同的连接,可以理解成,SOCKET是区分不同连接的ID).当服务器listen ...
- Centos7(阿里云服务器)安装Anaconda的详细步骤与心得
在本地安装Anaconda的各个版本的文章已经很多,但是感觉不是很详细,因此,在此发发自己在Centos7(阿里云服务器)安装Anaconda的心得和步骤: 注:需要注意的地方会用不同颜色区别. 1. ...
- js 快捷键设置
function hotkey() { var a=window.event.keyCode; if((a==65)&&(event.ctrlKey)) { alert("你 ...
- CodeForces 400A Inna and Choose Options
Inna and Choose Options Time Limit: 1000ms Memory Limit: 262144KB This problem will be judged on Cod ...