Code:

#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
#define maxn 1002
#define ll long long
#define inf 100000000000
int minv[maxn][maxn], maxv[maxn][maxn];
struct Node{
ll val;
int pos;
Node(ll val=0,int pos=0):val(val),pos(pos){}
};
deque<Node>Q[2];
int main(){
//freopen("input.in","r",stdin);
int a,b,n;
ll ans=inf,p;
scanf("%d%d%d",&a,&b,&n);
for(int i=1;i<=a;++i){
for(int j=1;j<=b;++j) {
scanf("%lld",&p);
while(!Q[0].empty()&&Q[0].front().pos<j-n+1)Q[0].pop_front();
while(!Q[1].empty()&&Q[1].front().pos<j-n+1)Q[1].pop_front();
while(!Q[0].empty()&&Q[0].back().val>=p) Q[0].pop_back();
while(!Q[1].empty()&&Q[1].back().val<=p) Q[1].pop_back();
Q[0].push_back(Node(p,j)),Q[1].push_back(Node(p,j));
if(j>=n) minv[i][j]=Q[0].front().val, maxv[i][j]=Q[1].front().val;
}
while(!Q[0].empty())Q[0].pop_back();
while(!Q[1].empty())Q[1].pop_back();
}
for(int i=n;i<=b;++i){
for(int j=1;j<=a;++j){
while(!Q[0].empty()&&Q[0].front().pos<j-n+1)Q[0].pop_front();
while(!Q[1].empty()&&Q[1].front().pos<j-n+1)Q[1].pop_front();
while(!Q[0].empty()&&Q[0].back().val>=minv[j][i]) Q[0].pop_back();
while(!Q[1].empty()&&Q[1].back().val<=maxv[j][i]) Q[1].pop_back();
Q[0].push_back(Node(minv[j][i],j)),Q[1].push_back(Node(maxv[j][i],j));
if(j>=n) ans=min(ans,Q[1].front().val-Q[0].front().val);
}
while(!Q[0].empty())Q[0].pop_back();
while(!Q[1].empty())Q[1].pop_back();
}
printf("%lld",ans);
return 0;
}

  

[HAOI2007]理想的正方形 单调队列 暴力的更多相关文章

  1. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  2. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  3. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  4. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  5. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  6. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  7. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

  8. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  9. BZOJ 1047 理想的正方形(单调队列)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...

随机推荐

  1. iOS开发 之 不要告诉我你真的懂isEqual与hash!

    目录 为什么要有isEqual方法? 如何重写自己的isEqual方法? 为什么要有hash方法? hash方法什么时候被调用? hash方法与判等的关系? 如何重写自己的hash方法? 为什么要有i ...

  2. ES正常停止步骤

    1. 停止所有index服务 2. 执行curl -XPUT $url/_cluster/settings?pretty -d '{"transient" : {"clu ...

  3. poj--2549--Sumsets(二分查找)

    Sumsets Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  4. javascript系列-class9.DOM(上)

    欢迎加入前端交流群交流知识获取视频资料:749539640 1.文档对象模型DOM(document Object Model)        所谓DOM就是以家族的形式描述HTML       节点 ...

  5. 最长公共子序列(稀疏序列)nlogn解法

    首先这种做法只能针对稀疏序列, 比如这种情况: abc abacabc. 会输出5 ,,,,就比较尴尬, #include<iostream> #include<cstdio> ...

  6. POJ 1664 放苹果【DFS】

    题意:给出n个苹果,m个盘子,问有多少种不同的苹果放置方法 可以把它抽象为把一个数n,拆分成a1,a2,a3,---,am,使得它们的和为n, 话说这一题是学习的ppt里面的,它的思路就是搜索 搜索条 ...

  7. category和关联对象

    如上所见,我们知道在category里面是无法为category添加实例变量的.但是我们很多时候需要在category中添加和对象关联的值,这个时候可以求助关联对象来实现. MyClass+Categ ...

  8. sass的用法小结(四)进阶篇

    Sass 的数据类型 Sass 既然有了类似编程语言的功能,自然也就有了简单的数据类型.这里简单的介绍一些 Sass 中的数据类型,因为在后面的讨论中要用到有关的内容. Sass 中主要有六种数据类型 ...

  9. python继承 super()

    写这篇博文,始于以下问题的探究: #coding:utf-8 class A(object): def __init__(self): print 'enter A' print 'leave A' ...

  10. axios的坑

    1.axios默认发送application/json 格式 https://www.cnblogs.com/qdcnbj/p/8143155.html 资料: https://www.npmjs.c ...