A. Ilya and Diplomas
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Soon a school Olympiad in Informatics will be held in Berland, n schoolchildren will participate there.

At a meeting of the jury of the Olympiad it was decided that each of the n participants,
depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma.

They also decided that there must be given at least min1 and
at most max1 diplomas
of the first degree, at least min2 and
at mostmax2 diplomas
of the second degree, and at least min3 and
at most max3 diplomas
of the third degree.

After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which
maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree.

Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described
limitations.

It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all nparticipants
of the Olympiad will receive a diploma of some degree.

Input

The first line of the input contains a single integer n (3 ≤ n ≤ 3·106) — the
number of schoolchildren who will participate in the Olympiad.

The next line of the input contains two integers min1 and max1 (1 ≤ min1 ≤ max1 ≤ 106) — the
minimum and maximum limits on the number of diplomas of the first degree that can be distributed.

The third line of the input contains two integers min2 and max2 (1 ≤ min2 ≤ max2 ≤ 106) — the
minimum and maximum limits on the number of diplomas of the second degree that can be distributed.

The next line of the input contains two integers min3 and max3 (1 ≤ min3 ≤ max3 ≤ 106) — the
minimum and maximum limits on the number of diplomas of the third degree that can be distributed.

It is guaranteed that min1 + min2 + min3 ≤ n ≤ max1 + max2 + max3.

Output

In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas.

The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the
second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.

Sample test(s)
input
6
1 5
2 6
3 7
output
1 2 3
input
10
1 2
1 3
1 5
output
2 3 5
input
6
1 3
2 2
2 2
output
2 2 2 

   题意:给出3个区间 [L1,R1],[L2,R2],[L3,R3] 和正整数n,要求在3个区间内各选一个正整数。使得选出来的数之和为n。假设有多种选法,取从第一个区间内选出的

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h> using namespace std; int n;
struct node
{
int minn;
int maxx;
}q[5]; int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=3;i++)
{
scanf("%d%d",&q[i].minn,&q[i].maxx);
}
int a[5];
int sum = n;
memset(a,0,sizeof(a));
for(int i=1;i<=3;i++)
{
a[i] = q[i].minn;
sum -= a[i];
}
for(int i=1;i<=3;i++)
{
int num = q[i].maxx - q[i].minn;
if(sum>=num)
{
a[i] += num;
sum -= num;
}
else
{
a[i] += sum;
break;
}
}
printf("%d %d %d\n",a[1],a[2],a[3]);
}
return 0;
}

A. Ilya and Diplomas( Codeforces Round #311 (Div. 2) )的更多相关文章

  1. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

  2. C. Arthur and Table(Codeforces Round #311 (Div. 2) 贪心)

    C. Arthur and Table time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. B. Ohana Cleans Up(Codeforces Round #309 (Div. 2))

    B. Ohana Cleans Up   Ohana Matsumae is trying to clean a room, which is divided up into an n by n gr ...

  4. B. The Number of Products(Codeforces Round #585 (Div. 2))

    本题地址: https://codeforces.com/contest/1215/problem/B 本场比赛A题题解:https://www.cnblogs.com/liyexin/p/11535 ...

  5. 【CodeForces】841C. Leha and Function(Codeforces Round #429 (Div. 2))

    [题意]定义函数F(n,k)为1~n的集合中选择k个数字,其中最小数字的期望. 给定两个数字集A,B,A中任意数字>=B中任意数字,要求重组A使得对于i=1~n,sigma(F(Ai,Bi))最 ...

  6. D. Zero Quantity Maximization ( Codeforces Round #544 (Div. 3) )

    题目链接 参考题解 题意: 给你 整形数组a 和 整形数组b ,要你c[i] = d * a[i] + b[i], 求  在c[i]=0的时候  相同的d的数量 最多能有几个. 思路: 1. 首先打开 ...

  7. Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)

    C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...

  8. CodeForces 360E Levko and Game(Codeforces Round #210 (Div. 1))

    题意:有一些无向边m条权值是给定的k条权值在[l,r]区间可以由你来定,一个点s1 出发一个从s2出发  问s1 出发的能不能先打到f 思路:最短路. 首先检测能不能赢 在更新的时候  如果对于一条边 ...

  9. 贪心+构造( Codeforces Round #344 (Div. 2))

    题目:Report 题意:有两种操作: 1)t = 1,前r个数字按升序排列:   2)t = 2,前r个数字按降序排列: 求执行m次操作后的排列顺序. #include <iostream&g ...

随机推荐

  1. Linux配置nignx虚拟主机

    Nginx 是一个轻量级高性能的 Web 服务器, 并发处理能力强, 对资源消耗小, 无论是静态服务器还是小网站, Nginx 表现更加出色, 作为 Apache 的补充和替代使用率越来越高. 我在& ...

  2. OpenLDAP 2.4.44 安装 + phpLDAPadmin 安装

    网上太多的例子搞 OpenLDAP  + phpLDAPadmin  但是没有一个能让你成功配置起来.蛋疼得很.记录一下过程 系统版本:centos7.4 软件版本:2.4.44  超级重要,版本不对 ...

  3. ZOJ 3435

    求(1,1,1)至(x,y,z)的互质个数. 即求(0,0,0)到(x-1,y-1,z-1)互质个数. 依然如上题那样做.但很慢...好像还有一个分块的思想,得学学. #include <ios ...

  4. Boost Log 基本使用方法

    Boost Log 基本使用方法 flyfish 2014-11-5 依据boost提供的代码演示样例,学习Boost Log 的基本使用方法 前提 boost版本号boost_1_56_0 演示样例 ...

  5. 安卓APP载入HTML5页面解决方式总结

    因为H5页面在移动端的兼容性及扩展性方面体现出来的优势,又兼得APP中植入H5页面相应用的灵活性有大大的提升(如活动.游戏的更新等).APP开发不可避免的须要载入一些H5页面.但安卓client对网页 ...

  6. EF的CRUD

    已经知道EF就是一个能够使得编程人员用面向对象的思想操作数据库的框架,那么在最初学习SQL的时候我们就知道对数据库的操作就是增删改查.万变不离其宗. EF也是操作数据库的当然也就是要对数据库实现增删改 ...

  7. js中callback执行

    <!DOCTYPE HTML> <html> <head> <meta charset="GBK" /> <title> ...

  8. Linux就该这么学 20181003(第三章管道符)

    参考链接https://www.linuxprobe.com/ 输入输出重定向 标准输入重定向STDIN 文件描述符0 默认键盘输入 标准输出重定向STOUT 文件描述符1 默认输出到屏幕 错误输出重 ...

  9. vim编辑器常用语法

    1)yy (功能描述:复制光标当前一行) y数字y (功能描述:复制一段(从第几行到第几行))2)p (功能描述:箭头移动到目的行粘贴)3)u (功能描述:撤销上一步)4)dd (功能描述:删除光标当 ...

  10. 51nod 1158 全是1的最大子矩阵(单调栈 ,o(n*m))

    前置问题:51nod 1102 面积最大的矩形 附上链接: 51nod 1102 面积最大的矩形 这题的题解博客 需要了解的知识:单调栈,在前置问题中已经讲解. 解题思路 对每行求左边连续1的个数,得 ...