先上题目:

Continued Fraction

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 332    Accepted Submission(s): 106

Problem Description
Dumbear loves numbers very much.
One day Dumbear found that each number can be expressed as a continued fraction. See below.

Formally, we say a number k can be expressed as a continued faction if

where a0, a1, …, an are positive integers except that a0 maybe be 0 and an cannot be 1.
Dumbear also found a sequence which looks like the Farey sequence. Initially the sequenceand if we insert an elementbetween all the two adjacent element,in Di, then we get a sequence Di+1. So you can seeandAssume initially you are on the elementin D0, and if now you are on the element k in Di, then if you go left(‘L’)(or right(‘R’)) you will be on the left(or right) element of k in Di+1. So a sequence composed of ‘L’ and ‘R’ denotes a number. Such as ‘RL’ denotes the number 

Now give you a sequence composed of ‘L’ and ‘R’, you should print the continued fraction form of the number. You should use ‘-‘ to show the vinculum(the horizontal line), you should print one space both in front and back of ‘+’, and all parts up or down the vinculum should be right aligned. You should not print unnecessary space, ‘-‘ or other character. See details in sample.

 
Input
There are several test cases in the input.
For each test case, there is a single line contains only a sequence composed of ‘L’ and ‘R’. The length of the sequence will not exceed 10000.
The input terminates by end of file marker.
 
Output
For each test case, output the continued fraction form of the number which the input sequence denotes. The total amount of output will not exceed 4MB.
 
Sample Input
LR
RL
 
Sample Output
           1
0 + -----
           1
      1 + -
           2
     1
1 + -
     2
 
    题意:给出一个只有L和R的字符串,根据它给出的定义移动,然后将最终的结果按照他给出的那种分式输出。
    模拟+找规律。首先先根据它的定义模拟它的移动,然后可以根据自己的分析求出a[]数组的每一项是多少,然后在按照它的格式输出。这里求a[]数组分析一下就可以知道怎么怎么求了,然后关于输出,通过前后项的长度关系就可以得出要输出多少个空格多少'-'了,但是这样做的话直接提交可能会wa,这里可以通过输出前几项找一下规律。将L,LL,LR,LLL,LLR,LRL,LRR以及R,RL,RR,RLL,RLR,RRL,RRR(也就是前几项的变化的输有情况)输出,然后通过观察,我们可以发现,对于第2项开始,如果当前项等于前一项,那么a[tot]++,否则a[tot]--;tot++;a[tot]=2;当前其实如果写得好的话可以顺便把前一项的情况也包含在公式里面。然后直接构造a[],在打印,速度和准确性上面都会有保证。
 
上代码:
 
 #include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#define MAX 10002
#define PUTS(M,x) for(int k=0;k<M;k++) putchar(x)
#define ll long long
using namespace std; char c[MAX];
int l;
ll a[MAX];
char ss[MAX<<][];
int len[MAX];
int tot;
typedef struct{
ll fz,fm;
}fs; fs A[],p; void cons(int l){
if(c[]=='L'){
a[]=; a[]=; tot=;
}else{
a[]=; tot=;
}
for(int i=;i<l;i++){
if(c[i]==c[i-]) a[tot]++;
else{
a[tot]--;
a[++tot]=;
}
}
tot++;
} int main()
{
int M;
//freopen("data.txt","r",stdin);
while(scanf("%s",c)!=EOF){
l=strlen(c);
// A[0].fz=0; A[0].fm=1;
// A[1].fz=1; A[1].fm=1;
// A[2].fz=1; A[2].fm=0;
// for(int i=0;i<l;i++){
// if(c[i]=='L'){
// A[2]=A[1];
// }else{
// A[0]=A[1];
// }
// A[1].fz=A[0].fz+A[2].fz;
// A[1].fm=A[0].fm+A[2].fm;
// }
// tot=0;
// p=A[1];
// while(1){
// a[tot]=p.fz/p.fm;
// sprintf(ss[tot],"%I64d",a[tot]);
// tot++;
// p.fz=p.fz%p.fm;
// if(p.fz==0) break;
// else if(p.fz==1){
// a[tot]=p.fm;
// sprintf(ss[tot],"%I64d",a[tot]);
// tot++;
// break;
// }
// swap(p.fz,p.fm);
// }
cons(l);
for(int i=;i<tot;i++) sprintf(ss[i],"%I64d",a[i]);
len[tot-]=strlen(ss[tot-]);
len[tot-]=strlen(ss[tot-]) + + strlen(ss[tot-]);
for(int i=tot-;i>=;i--){
len[i]=strlen(ss[i]) + + len[i+];
} // for(int i=0;i<tot;i++) printf("%I64d ",a[i]);
// printf("\n");
// for(int i=0;i<tot;i++) printf("%d ",len[i]);
// printf("\n");
M=len[];
for(int i=;i<tot-;i++){
PUTS(M-,' '); putchar(''); putchar('\n');
PUTS(M-len[i],' ');
printf("%s + ",ss[i]);
PUTS(len[i+],'-');
putchar('\n');
}
PUTS(M-(int)strlen(ss[tot-]),' ');
printf("%s",ss[tot-]);
printf("\n");
}
return ;
}

/*3556*/

 

HDU - 3556 - Continued Fraction的更多相关文章

  1. CSUOJ 1638 Continued Fraction

    1638: Continued Fraction Time Limit: 1 Sec  Memory Limit: 128 MB Description Input Output Sample Inp ...

  2. hdu 6223 Infinite Fraction Path

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6223 题意:给定长度为n的一串数字S,现在要按照一种规则寻找长度为n的数字串,使得该数字串的字典序最大 ...

  3. HDU - 6223 Infinite Fraction Path (倍增+后缀数组)

    题意:给定一个长度为n(n<=150000)的字符串,每个下标i与(i*i+1)%n连边,求从任意下标出发走n步能走出的字典序最大的字符串. 把下标看成结点,由于每个结点有唯一的后继,因此形成的 ...

  4. Continued Fractions CodeForces - 305B (java+高精 / 数学)

    A continued fraction of height n is a fraction of form . You are given two rational numbers, one is ...

  5. CF 305B——Continued Fractions——————【数学技巧】

    B. Continued Fractions time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  6. 2014-2015 ACM-ICPC East Central North America Regional Contest (ECNA 2014) A、Continued Fractions 【模拟连分数】

    任意门:http://codeforces.com/gym/100641/attachments Con + tin/(ued + Frac/tions) Time Limit: 3000/1000 ...

  7. 欧拉工程第65题:Convergents of e

    题目链接 现在做这个题目真是千万只草泥马在心中路过 这个与上面一题差不多 这个题目是求e的第100个分数表达式中分子的各位数之和 What is most surprising is that the ...

  8. BCTF warmup 50

    这是一道关于RSA的解密题:首先,我们要明白,通常是公钥加密.私钥解密,私钥签名.公钥验证.这个题目中给出的是一个公钥和一段密文. 刚开始一直以为和验证签名有关,费劲脑汁也想不出来怎么办.下面介绍些思 ...

  9. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

随机推荐

  1. JSP-Runood:JSP 客户端请求

    ylbtech-JSP-Runood:JSP 客户端请求 1.返回顶部 1. JSP 客户端请求 当浏览器请求一个网页时,它会向网络服务器发送一系列不能被直接读取的信息,因为这些信息是作为HTTP信息 ...

  2. openStack logo

  3. SQL service 自动解决依赖包 验证

    依赖关系解决 ============================================================================================= ...

  4. hibernate基础学习---hierbnate2级缓存

    1:开启二级缓存sessionFactory需要安装jar包 2:在实体类配置文件添加(配置二级缓存).我的配置文件是Account.hbm.xml <?xml version="1. ...

  5. codevs3342绿色通道(单调队列优化dp)

    3342 绿色通道  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold   题目描述 Description <思远高考绿色通道>(Green Pass ...

  6. phonegap+cordova+ionic调用原生API

    上一篇博客讲了phonegap+cordova+ionic的环境搭建,今天再来分享一篇cordova调用原生API的文章.从技术角度上来讲,这并不是很难,只是有些细节要是没有注意,或者某些步骤不知道的 ...

  7. HTML-ul分分钟理解

    在HTML中,列表有三种,如图分别是有序.无序和自定义列表.上面是我在网络上找到的一张图片很明了就看以看出来,今天要分享的就是其中的无序列表Ul(unordered list),给大家整理了一下我所知 ...

  8. 【知识总结】线性筛_杜教筛_Min25筛

    首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博 ...

  9. web.xml里,classpath使用范围

    比如说在web.xml里,配置spring监听. 在标签<param-value>里,classpath指向的配置文件路径应该是在config资源文件夹下的applicationConte ...

  10. 浏览器被“hao123.3377.com”主页劫持的解决办法

    问题描述: 浏览器被一个叫做hao123.3377的类似hao123网址导航的家伙,强行贴上.狗皮膏药一样. 问题解决: 尝试了网上说的包括下载360什么的,都不咋好用.后来发现是在激活win10(盗 ...