题目描述

某人写了n封信和n个信封,如果所有的信都装错了信封。求所有信都装错信封共有多少种不同情况。

输入输出格式

输入格式:

一个信封数n

输出格式:

一个整数,代表有多少种情况。

输入输出样例

输入样例#1:
2

输出样例#1:
1

解题思路

这题就是裸的错排公式,D(n)=(n-1)*(D(n-1)+D(n-1)),代码如下

#include<stdio.h>
int main()
{
int d[]={,,,};//也不知道为什么0封信0个信封也有一种装错的情况……
int n;
scanf("%d",&n);
if(n<=)
{
printf("%d",d[n]);
return ;
}
for(int i=;i<=n;i++)
d[i]=(i-)*(d[i-]+d[i-]);
printf("%d",d[n]);
return ;
}

下面是转自百度百科的推导过程——

递推的推导错排公式

当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
综上得到
D(n) = (n-1) [D(n-2) + D(n-1)]
特殊地,D(1) = 0, D(2) = 1.
下面通过这个递推关系推导通项公式:
为方便起见,设D(k) = k! N(k), k = 1, 2, …, n,
则N(1) = 0, N(2) = 1/2.
n ≥ 3时,n! N(n) = (n-1) (n-1)! N(n-1) + (n-1)! N(n-2)
即 nN(n) = (n-1) N(n-1) + N(n-2)
于是有N(n) - N(n-1) = - [N(n-1) - N(n-2)] / n = (-1/n) [-1/(n-1)] [-1/(n-2)]…(-1/3) [N(2) - N(1)] = (-1)^n / n!.
因此
N(n-1) - N(n-2) = (-1)^(n-1) / (n-1)!,
N(2) - N(1) = (-1)^2 / 2!.
相加,可得
N(n) = (-1)^2/2! + … + (-1)^(n-1) / (n-1)! + (-1)^n/n!
因此
D(n) = n! [(-1)^2/2! + … + (-1)^(n-1)/(n-1)! + (-1)^n/n!].
此即错排公式。

容斥原理

编辑

用容斥原理也可以推出错排公式:
正整数1, 2, 3, ……, n的全排列有 n! 种,其中第k位是k的排列有 (n-1)! 种;当k分别取1, 2, 3, ……, n时,共有n*(n-1)!种排列是至少放对了一个的,由于所求的是错排的种数,所以应当减去这些排列;但是此时把同时有两个数不错排的排列多排除了一次,应补上;在补上时,把同时有三个数不错排的排列多补上了一次,应排除;……;继续这一过程,得到错排的排列种数为
D(n) = n! - n!/1! + n!/2! - n!/3! + … + (-1)^n*n!/n! = ∑(k=2~n) (-1)^k * n! / k!,
即D(n) = n! [1/0! - 1/1! + 1/2! - 1/3! + 1/4! + ... + (-1)^n/n!].
其中,∑表示连加符号,k=2~n是连加的范围;0! = 1,可以和1!相消。

简化公式

编辑

错排公式的原形为D(n) = n! (1/0! - 1/1! + 1/2! - 1/3! - ..... + (-1)^n/n!),当n很大时计算就很不方便。一个供参考的简化后的公式是D(n) = [n!/e+0.5] ,其中e是自然对数的底,[x]为x的整数部分。
证明:
由于1/e = e^(-1) = 1/0! - 1/1! + 1/2! - 1/3! - ..... + (-1)^n/n! + Rn(-1),
其中Rn(-1)是余项,等于(-1)^(n+1) * e^u / (n+1)!,且u∈(-1, 0).
所以,D(n) = n! * e^(-1) - (-1)^(n+1) * e^u / (n+1), u∈(-1, 0).
而|n! Rn| = |(-1)^(n+1) * e^u / (n+1)| = e^u / (n+1) ∈ (1/[e(n+1)], 1/(n+1)),可知即使在n=1时,该余项(的绝对值)也小于1/2。
因此,无论n! Rn是正是负,n! / e + 1/2的整数部分都一定与M(n)相同。

洛谷 P1595 信封问题的更多相关文章

  1. 洛谷P1595 信封问题 题解 错排问题

    作者:zifeiy 标签:排列组合,错排问题 题目链接:https://www.luogu.org/problem/P1595 题目描述:某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都 ...

  2. 洛谷——P1595 信封问题

    P1595 信封问题 题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n(n<=20) 输出格式: 一个 ...

  3. 洛谷P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  4. 错排问题 && 洛谷 P1595 信封问题

    传送门 一道裸的错排问题 错排问题 百度百科上这样说 就是对于一个排列,每一个数都不在正确的位置上的方案数.n 个元素的错排数记为 D(n). 公式 D(n)=(n−1)∗(D(n−2)+D(n−1) ...

  5. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  6. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  7. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  8. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  9. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

随机推荐

  1. NYOJ15括号匹配

    NYOJ15括号匹配 括号匹配(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:6   描述 给你一个字符串,里面只包含"(",")" ...

  2. bzoj4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...

  3. uoj#149

    dp 没想出来 最先开始想 dp[i][j][k]表示s匹配到i,t匹配到j,当前分了k段的方案数 s[i]==t[j] dp[i][j][k]+=dp[i-1][j-1][k-1] s[i]==t[ ...

  4. Prime Path(bfs)

    http://poj.org/problem?id=3126 题意:给两个四位数n,m,将n变成m需要多少步,要求每次只能改变n的某一位数,即改变后的数与改变前的数只有一位不同,且每次改变后的数都是素 ...

  5. python 9:list.reverse()(倒置原列表,可恢复改变)

    bicycles = ['trek', 'cannondale', 'redline', 'specialized'] print(bicycles) bicycles.reverse() #倒置原列 ...

  6. dotnet core 发布配置(测试数据库和正式数据库自动切换)

    一.起源 在进行项目开发时,常常要求开发环境,测试环境及正式环境的分离,并且不同环境运行的参数都是不一样的,比如监听地址,数据库连接信息等.当然我们把配置信息保存到一个文件中,每次发布的时候,可以先修 ...

  7. Oracle 动态sql小例子

    错误写法: create or replace procedure testproce20130228issqlstr varchar2(8000);date1 varchar2(10);begins ...

  8. python--5、包

    包 包,即一个包含__init__.py文件的文件夹,创建包的目的也就是为了用文件夹将文件(模块)组织起来.python3中,即使包里没有__init__.py文件,仍能import使用.而pytho ...

  9. Android Activity has leaked window that was originally added

    今天调试程序时log中突然打印这样的错误,但是程序并没有crash,为了不放过一个错误,我决定调查一下. 当时是离开一个activity,然后提示是否退出此界面,接下来就打印此错误: - ::): A ...

  10. android AIDL示例代码(mark下)

    1.demo结构图 2.ipcclient Book类. package com.mu.guoxw.ipcclient; import android.os.Parcel; import androi ...