Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without making errors is something that computers do well and people do poorly.

Iteration is so common, Python provides several language features to make it easier. One is the for statement and another is the while statement.

More formally, here is the flow of execution for while statement:

  1. Evaluate the condition, yielding True or False.
  2. If the condition is false, exit the while statement and continue execution at the next statement.
  3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the top. The body of loop should change the value of one or more variables so that eventually the condition becomes false and the loop terminates. Otherwise the loop will repeat forever, which is called an infinite loop. An endless source of amusement for computer scientists is the observation that the directions on shampoo, “Lather, rinse, repeat” are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we know the value of n is finite, and we can see the value of n gets smaller each time through the loop, so eventually we have to get to 0. In other cases, it is not so easy to tell:

def sequence(n):
while n != 1:
print n,
if n%2 == 0: # n is even
n = n/2
else: # n is odd
n = n*3+1

The condition for this loop is n!=1, so the loop will continue until n is 1, which makes the condition false. Each time through the loop, the program outputs the value of n and then checks whether it is even or odd. When it is even, n is divided by 2. If it is odd, the value of n is replaced with n*3+1. For example, if the argument passed to sequence is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will ever reach 1, or the program terminates. For some particular values of n, we can prove termination. For example, if the starting value is a power of two, then the value of n will be even each time through the loop until it reaches 1. The previous example ends with such a sequence, starting with 16.

The hard question is whether we can prove that this program terminates for all positive values of n. So far, no one has been able to prove it or disprove it.

from think in Python

The while statement的更多相关文章

  1. org.apache.ibatis.binding.BindingException: Invalid bound statement (not found):

    org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): da.huying.usermanag ...

  2. [解决方案]CREATE DATABASE statement not allowed within multi-statement transaction.

    CREATE DATABASE statement not allowed within multi-statement transaction. 刚开始报这个错误的时候,我上度娘搜了一下. 别人是在 ...

  3. Drop all the tables, stored procedures, triggers, constraints and all the dependencies in one SQL statement

    Is there any way in which I can clean a database in SQl Server 2005 by dropping all the tables and d ...

  4. JDBC中的Statement和PreparedStatement的区别

    JDBC中的Statement和PreparedStatement的区别  

  5. SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATEMENT'OpenRowset/OpenDatasource' 的访问

    delphi ado 跨数据库访问 语句如下 ' and db = '帐套1' 报错内容是:SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATE ...

  6. Exception:HTTP Status 500 - org.apache.ibatis.binding.BindingException: Invalid bound statement (not found)

    主要错误信息如下: HTTP Status 500 - org.apache.ibatis.binding.BindingException: Invalid bound statement (not ...

  7. SQL SERVER 2005删除维护作业报错:The DELETE statement conflicted with the REFERENCE constraint "FK_subplan_job_id"

    案例环境: 数据库版本: Microsoft SQL Server 2005 (Microsoft SQL Server 2005 - 9.00.5000.00 (X64) ) 案例介绍: 对一个数据 ...

  8. 第1章 重构,第一个案例(2):分解并重组statement函数

    2. 分解并重组statement (1)提炼switch语句到独立函数(amountFor)和注意事项. ①先找出函数内的局部变量和参数:each和thisAmount,前者在switch语句内未被 ...

  9. 第1章 重构,第一个案例(1):糟糕的statement函数设计

    1. 启航:影片出租,计算每一位顾客的消费金额并打印清单 1.1 场景说明: (1)影片分类规则:普通片.儿童片和新片等3类 (2)每种影片计算租金的方式. ①普通片:基本租金为2元,超过2天的部分每 ...

  10. jdbc执行Statement接口的步骤

    jdbc执行Statement接口的步骤如下: 1)驱动注册程序: Class.forName(com.mysql.jdbc.Driver); 2)获取连接对象: Connection conn = ...

随机推荐

  1. POJ 2369

    我们知道,当循环长度为L时,置换群幂次为K ,则结果是GCD(L,K)个积相乘. 于是,我们只需要求出每个循环的长度,求得它们的最小公倍数即为解. #include <iostream> ...

  2. log4j.propertie配置具体解释

    1.log4j.rootCategory=INFO, stdout , R 此句为将等级为INFO的日志信息输出到stdout和R这两个目的地,stdout和R的定义在以下的代码,能够随意起名.等级可 ...

  3. 项目复习期总结3:CSS引入方式,凝视,命名规范,背景,行高,文本属性

    文件夹: 1.CSS凝视的书写 怎么写?优点? 2.CSS引入方式  各种的优缺点 3.选择器的写法与选择器的优先级 4.CSS命名规范 5.背景,行高 6.文本(text与font开头)等全部属性 ...

  4. Gradle 编译多个project(包括多Library库project依赖)指导

    Gradle Android最新自己主动化编译脚本教程(提供demo源代码) 这篇文章我简单写了基于Gradle2.1 进行的android project和android library的编译实例, ...

  5. HDU 1392 凸包子

    Surround the Trees Problem Description There are a lot of trees in an area. A peasant wants to buy a ...

  6. bzoj3275: Number(最小割)

    3275: Number 题目:传送门 题解: 双倍经验@bzoj3158 代码: #include<cstdio> #include<cstring> #include< ...

  7. (转载)你真的理解Android AIDL中的in,out,inout么?

    前言 这其实是一个很小的知识点,大部分人在使用AIDL的过程中也基本没有因为这个出现过错误,正因为它小,所以在大部分的网上关于AIDL的文章中,它都被忽视了——或者并没有,但所占篇幅甚小,且基本上都是 ...

  8. Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))

    题目: 解题思路 这题就是0,1,2...n-1总共n个数字形成的最小生成树. 我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值. 要计算n个数字的情 ...

  9. Android APP 调试过程中遇到的问题。

    调试过过程中APP安装完启动后有的时候会异常退出,报这个错误.有的时候可以直接启动.查找不到原因.网上说把commit方法替换成commitAllowingStateLoss() 也无效. Andro ...

  10. @RequestMapping[转]

    转自 http://www.cnblogs.com/qq78292959/p/3760560.html#undefined 引言: 前段时间项目中用到了RESTful模式来开发程序,但是当用POST. ...