题目描述

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

输入输出格式

输入格式:

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

输出格式:

输出最小费用

输入输出样例

输入样例#1: 复制

5 4
3
4
2
1
4
输出样例#1: 复制

1

单调队列优化DP
具体思路就是列出DP方程
$dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j+L)^2)$
然后证明决策单调性,之后根据得到的公式转移。
推倒过程懒得写了
推荐一篇写的炒鸡详细的博客
http://www.cnblogs.com/MashiroSky/p/5968118.html
#include<cstdio>
#include<cstring>
#define int long long
const int MAXN=1e5+,INF=1e8+;
using namespace std;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,MAXN,stdin)),p1==p2?EOF:*p1++;
}
inline int read()
{
char c=nc();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=nc();}
while(c>=''&&c<=''){x=x*+c-'';c=nc();}
return x*f;
}
int N,L;
int a[MAXN],sum[MAXN],f[MAXN],dp[MAXN];
int Q[MAXN],l=,r=;
double slope(int j,int k)
{
return (dp[j]-dp[k]+(f[j]+L)*(f[j]+L)-(f[k]+L)*(f[k]+L))/(2.0*(f[j]-f[k]));
}
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
N=read();L=read();L++;//C=L+1
for(int i=;i<=N;i++) a[i]=read(),sum[i]=sum[i-]+a[i],f[i]=sum[i]+i;
for(int i=;i<=N;i++)
{
while(l<r&&slope(Q[l],Q[l+])<=f[i]) l++;
dp[i]=dp[Q[l]]+(f[i]-L-f[Q[l]])*(f[i]-L-f[Q[l]]);
while(l<r&&slope(Q[r-],Q[r])>slope(Q[r],i)) r--;
Q[++r]=i;
}
printf("%lld",dp[N]);
return ;
}

 

洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)的更多相关文章

  1. 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)

    qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP

    原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algo ...

  3. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  4. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  5. 洛谷 P3195 [HNOI2008]玩具装箱TOY

    题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...

  7. [洛谷P3195][HNOI2008]玩具装箱TOY

    题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...

  8. 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy

    本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...

  9. 洛谷 P3195 [HNOI2008] 玩具装箱

    链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...

随机推荐

  1. UE4在VS2013中各个编译配置代表意义

    UE4中有个各式各样的编译配置,都怎么个意思呢? 对原文的理解和翻译. https://docs.unrealengine.com/latest/INT/Programming/Development ...

  2. 【Linux】进程调度概述

    1 可运行队列 (基于实时进程调度) 调度程序中最主要的数据结构式运行队列(runqueue).可运行队列是给定处理器上的可运行进程的链表,每一个处理器一个. 每一个可投入运行的进程都唯一的归属于一个 ...

  3. 使用Networkx进行图的相关计算——黑产集团挖掘,我靠,可以做dns ddos慢速攻击检测啊

    # -*- coding: utf-8 -*- import networkx as nx import matplotlib.pyplot as plt iplist={} goodiplist={ ...

  4. (二)Ribbon(负载均衡的客户端)+Rest

    前面讲了服务的注册与发现,微服务项目会把项目的各个业务需求划分成几个模块来单独提供服务,各服务间的调用都是采用Http Restful来实现,但是在SpringClound中服务间的调用有两种方式:一 ...

  5. STL数组和com数组相互转换的做法

    作者:朱金灿 来源:http://blog.csdn.net/clever101 STL的泛型数组是vetor,com的泛型数组类型是VARIANT.二者怎样能相互转化呢?就是说怎么把一个vector ...

  6. Tomcat学习(一)——使用Eclipse绑定Tomcat并发布应用

    1.下载Tomcat 官网地址:http://tomcat.apache.org/whichversion.html 2.目录结构 bin:脚本目录 启动脚本:startup.bat 停止脚本:shu ...

  7. 如何设置ASP.NET站点页面运行超时

    全局超时时间 服务器上如果有多个网站,希望统一设置一下超时时间,则需要设置 Machine.config 文件中的 ExecutionTimeout 属性值.Machine.config 文件位于 % ...

  8. 如何防止js刷新页面后倒计时改变

    1.存入cookie或localstorage(清除浏览器缓存后时间依然改变) 2.存入数据库

  9. ES6学习笔记(二十)Module 的加载实现

    上一章介绍了模块的语法,本章介绍如何在浏览器和 Node 之中加载 ES6 模块,以及实际开发中经常遇到的一些问题(比如循环加载). 1.浏览器加载 传统方法 HTML 网页中,浏览器通过<sc ...

  10. LightOJ-1336 Sigma Function 唯一分解定理 巧妙使用sqrt()等算数目

    题目链接:https://cn.vjudge.net/problem/LightOJ-1336 题意 给出一个区间[1, n],求区间内所有数中因数之和为偶数的数目 思路 第二次写这个题 首先想到唯一 ...