51nod 237 最大公约数之和 V3 杜教筛
Code:
#include <bits/stdc++.h>
#include <tr1/unordered_map> #define setIO(s) freopen(s".in","r",stdin)
#define ll long long
#define ull unsigned long long
#define maxn 10000000
#define mod 1000000007
#define inv 500000004 using namespace std;
using namespace tr1;
int vis[maxn],prime[maxn],tot;
ll phi[maxn];
unordered_map<ll,ull>ansphi;
void init(){
phi[1] = 1;
for(int i=2;i<maxn; ++i) {
if(!vis[i]) prime[++tot]=i,phi[i] = i-1;
for(int j=1;j<=tot&&i*prime[j]<maxn;++j) {
vis[i*prime[j]]=1;
if(i%prime[j]!=0) phi[i*prime[j]]=phi[i]*(prime[j]-1);
else {
phi[i*prime[j]]=phi[i]*(prime[j]);
break;
}
}
}
for(int i=1;i<maxn;++i) phi[i]+=phi[i-1],phi[i]%=mod;
}
ll solve(ll n){
if(n < maxn) return phi[n];
if(ansphi[n]) return ansphi[n];
ll ans=(ull)(((n%mod)*((n+1)%mod) %mod)*(inv%mod))%mod;
ll ans2=0;
for(ll l=2,r;l<=n;l=r+1) {
r=n/(n/l);
ans2+=(ll)(r-l+1)*solve(n/l);
ans2%=mod;
}
return ansphi[n]=(ans+mod-ans2)%mod;
}
int main(){
//setIO("input");
init();
ll n,ans=0,ans1,tmp;
scanf("%lld",&n);
for(ll l=1,r;l<=n;l=r+1){
r=(n/(n/l));
ans+=(((n/l)%mod)*((n/l)%mod)%mod*(solve(r)+mod-solve(l-1))%mod)%mod;
ans%=mod;
}
printf("%lld",ans);
return 0;
}
51nod 237 最大公约数之和 V3 杜教筛的更多相关文章
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51 Nod 1238 最小公倍数之和 V3 杜教筛
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
随机推荐
- nginx的缓存设置提高性能
对于网站的图片,尤其是新闻站, 图片一旦发布, 改动的可能是非常小的.我们希望 能否在用户访问一次后, 图片缓存在用户的浏览器端,且时间比较长的缓存. 可以, 用到 nginx的expires设置 . ...
- vue开发基本步骤
1 安装node.js 安装node.js之前,先进行nvm的安装: https://github.com/coreybutler/nvm-windows/releases最好选择稳定版本 ...
- Myeclipse中将项目上传到码云
公司实习之后习惯是代码上传到svn上,最近想起来个人的一些代码上传的到码云上比较方便,根据网上分享的博客内容结合自己的整理记录 其中大多数是参考了https://blog.csdn.net/izzyl ...
- 各项硬件使用剖析(一)---让你一眼就能区分瓶颈是Memory、processor ORdisk!
- Arduino基本函数介绍
转载自http://cnlearn.linksprite.com/?p=5248#.VwZrzvl95hE 数字 I/O (1)pinMode(pin, mode) 数字IO 口输入输出模式定义函数, ...
- 电脑-制作WIN7启动U盘
1.需要准备的工具:win7系统盘(安装盘,不是ghost),软碟通工具,大于4G的U盘
- BA--冷源系统原理图解
- linux下添加自定义脚本到开机自启动的方法
原文链接:http://www.jb51.net/LINUXjishu/183462.html 我的机器有个coreseek服务,但是没加到开启启动中去,导致机房一旦重启了机器,我的服务便不能使用了. ...
- python处理时间戳
代码如下: def timestamp_datetime(value): format = '%Y-%m-%d %H:%M:%S' # value为传入的值为时间戳(整形),如:133 ...
- 面试宝典之基本的C#面试问答
下文是100个基本的C#面试问答清单.这些面试问题简单.直接了当,涵盖了C#最基本的概念,大部分和面向对象的概念相关.所以如果你在准备C#面试,我建议你必须掌握这100个基本的C#面试问答来复习你的C ...