NTT裸模板,没什么好解释的

这种高深算法其实也没那么必要知道原理

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define N (1<<17)+10
#define ll long long
using namespace std; ll inv3,invl;
int r[N];
ll A[N],B[N],C[N],mulwn[N],invwn[N];
char s1[N],s2[N];
const ll p=;
ll qpow(ll x,ll y,ll mo){
ll ans=;
while(y){
if(y&) ans=(ans*x)%mo;
x=(x*x)%mo,y>>=;
}return ans;
}
void pre(int len,int l)
{
inv3=qpow(,p-,p),invl=qpow(len,p-,p);
for(int i=;i<len;i++) r[i]=(r[i>>]>>)|((i&)<<(l-));
for(ll i=;i<=len;i<<=) mulwn[i]=qpow(,(p-)/i,p);
for(ll i=;i<=len;i<<=) invwn[i]=qpow(mulwn[i],p-,p);
}
void NTT(ll *a,int len,int type)
{
for(int i=;i<len;i++)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int k=;k<=len;k<<=)
{
ll wn=(type>)?mulwn[k]:invwn[k];
int mid=k>>;
for(int i=;i<len;i+=k)
{
ll w=;
for(int j=;j<mid;j++,w=(w*wn)%p)
{
ll t=(w*a[i+j+mid])%p;
a[i+j+mid]=(a[i+j]-t+p)%p;
a[i+j]=(a[i+j]+t)%p;
}
}
}
if(type==-)
for(int i=;i<len;i++)
a[i]=(a[i]*invl)%p;
}
void NTT_main(ll *a,ll *b,ll *c,int len,int l)
{
NTT(a,len,);NTT(b,len,);
for(int i=;i<len;i++) c[i]=(a[i]*b[i])%p;
NTT(c,len,-);
} int main()
{
int n,len=,l=;scanf("%d",&n);
scanf("%s",s1),scanf("%s",s2);
for(int i=;i<n;i++) A[n-i-]=s1[i]-'';
for(int i=;i<n;i++) B[n-i-]=s2[i]-'';
while(len<n+n) len<<=,l++;
pre(len,l);
NTT_main(A,B,C,len,l);
for(int i=;i<len;i++)
if(C[i]>) C[i+]+=C[i]/,C[i]%=;
int j=len;
while(C[j]==) j--;
while(j>-) printf("%lld",C[j]),j--;
puts("");
return ;
}

模板 NTT 快速数论变换的更多相关文章

  1. NTT 快速数论变换

    NTT 先学习FFT 由于FFT是使用复数运算,精度并不好,而且也无法取模,所以有了NTT(快速数论变换). 建议先完全理解FFT后再学习NTT. 原根 NTT使用与单位根性质相似的原根来代替单位根. ...

  2. [学习笔记]NTT——快速数论变换

    先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...

  3. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  4. 【算法】快速数论变换(NTT)初探

    [简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...

  5. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

  6. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  7. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  8. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  9. 模板 - 数学 - 多项式 - 快速数论变换/NTT

    Huffman分治的NTT,常数一般.使用的时候把多项式的系数们放进vector里面,然后调用solve就可以得到它们的乘积.注意这里默认最大长度是1e6,可能需要改变. #include<bi ...

随机推荐

  1. [洛谷 P2365] 任务安排 (线性dp)

    3月14日第二题!! 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  2. 使用python脚本定时备份web网站

    #!/usr/bin/env python #-*- coding: utf-8 -*- import os import time # 备份的指定目录 source = ['/data/www/Ad ...

  3. Maven Hibernate

    1.使用maven管理Hibernate实现自动装配jar包 2.需要在配置文件pom.xml中引入 如:引入hibaernate5.2.11.Final版本的jar包,需要做如下配置: <!- ...

  4. ARP(地址解析协议)

    目录 1. ARP 概述 2. ARP 协议工作原理 3. ARP 缓存 4. ARP 报文格式 5. 抓包分析 5.1. ARP 请求报文 5.2. ARP 应答报文 6. 免费 ARP 7. AR ...

  5. web.xml 中context-param元素

    context-param元素含有一对参数名和参数值,用作应用的ServletContext上下文初始化参数.参数名在整个Web应用中必须是惟一的 param-name 子元素包含有参数名,而para ...

  6. oracle 解除锁表sql

    select b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_object a,dba_objects b where b ...

  7. 一种基于Qt的可伸缩的全异步C/S架构server实现(五) 单层无中心集群

    五.单层无中心集群 对40万用户规模以内的server.使用星形的无中心连接是较为简便的实现方式.分布在各个物理server上的服务进程共同工作.每一个进程承担若干连接.为了实现这个功能,须要解决几个 ...

  8. android优化 清除无效代码 UCDetector

    android下优化 清除无效 未被使用的 代码 UCDetector 官方下载地址:http://www.ucdetector.org/index.html UCDetector  是 eclips ...

  9. iOS推送 (百度推送)

    近期在使用推送,所以与大家分享一下我所遇到的问题,与解决这个问题的方法.! 1.首先生成CertificateSigningRequest文件. 点击钥匙串訪问-->从证书颁发机构请求证书--& ...

  10. cocos2d 3.3 lua 代码加密 luac

    1.0 cocos luacompile 使用方法 我用的普通的cocos2d lua,没用quick,quick好像能够对整个资源包含图像和音频都加密,打包成zip.我看了下luacompile 的 ...