0. 均匀分布期望的最大似然估计

首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望。均匀分布的概率密度函数为:f(x|θ)=1θ,0≤x≤θ。不失一般性地,将 x1,x2,…,xn 排序为顺序统计量:x(1)≤x(2)≤⋯≤x(n)。则根据似然函数定义,在此样本集合上的似然函数为:

L(θ|x)=∏i=1n1θ=θ−n(∗)

对 x(1)≥0,x(n)≤θ,否则为 0。然后求其对数形式关于 θ 的导数:

dlnL(θ|x)dθ=−nθ<0.

导数小于 0,因此可以说 L(x|θ) 是单调减函数 θ≥x(n),因此当 θ=x(n)(θ 能取到的最小值),也即 θ=max{x1,x2,…,xn} 时,L(x|θ) 值最大,则关于 θ 的最大似然估计为:

θ^=x(n)=max{x1,x2,…,xn}

1. 方差的有偏估计(biased estimation)

How to understand that MLE of Variance is biased in a Gaussian distribution?

2. 均值的有偏估计(biased estimation)

Is there an example where MLE produces a biased estimate of the mean?

[0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1,x2,…,xn,我们知均匀分布的期望为:θ2。

由第一部分知,该均匀分布期望的最大似然估计为:max{x1,x2,…,xn}/2,显然有:

P(max<θ)=1

所以有:E(max/2)<θ/2.

最大似然估计的缺陷 —— 方差和均值的 bias的更多相关文章

  1. 最大似然估计 (MLE) 最大后验概率(MAP)

    1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...

  2. 最大似然估计(MLE)和最大后验概率(MAP)

    最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知 ...

  3. 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...

  4. 【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    [机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximu ...

  5. 机器学习的MLE和MAP:最大似然估计和最大后验估计

    https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihoo ...

  6. 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

    最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...

  7. 最大似然估计(Maximum likelihood estimation)

    最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...

  8. 最大似然估计、n阶矩、协方差(矩阵)、(多元)高斯分布 学习摘要

    最大似然估计 似然与概率 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)和概率(Probability)是两个不同的概念.概率是在特定环境下某件事 ...

  9. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

随机推荐

  1. F - Dima and Lisa(哥德巴赫猜想)

    Problem description Dima loves representing an odd number as the sum of multiple primes, and Lisa lo ...

  2. java selenium手动最大化chrome浏览器的方法

    package my_automation; import java.awt.Dimension; import org.openqa.selenium.Capabilities; import or ...

  3. HBase编程 API入门系列之HTable pool(6)

    HTable是一个比较重的对此,比如加载配置文件,连接ZK,查询meta表等等,高并发的时候影响系统的性能,因此引入了“池”的概念. 引入“HBase里的连接池”的目的是: 为了更高的,提高程序的并发 ...

  4. MD5三种方法的学习总结

    MD5百度百科 MD5即Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致.是计算机广泛使用的杂凑算法之一(又译摘要算法.哈希算法),主流编程语言普遍已 ...

  5. 通过Hibernate实现添加功能

    package com.demo.dao; import org.hibernate.Session; import org.hibernate.SessionFactory; import org. ...

  6. LINUX 环境安装 jdk-tomcat安装

    linux版本两种安装方式 卸载自带jdk $rpm -qa | grep java $ rpm -e --nodeps java-**-openjdk-*$ rpm -e --nodeps java ...

  7. ACM___数学___九的余数

    九的余数 时间限制:3000 ms  |            内存限制:65535 KB 难度:3   描述  现在给你一个自然数n,它的位数小于等于一百万,现在你要做的就是求出这个数整除九之后的余 ...

  8. C++调用matlab编程

    C++调用Matlab,实在是不得已的方法.原文链接: http://kylen314.blog.com/2012/12/11/matlab_for_cplusplus/  这是个很善良的博客,只出现 ...

  9. 6 Python+Selenium的元素定位方法(CSS)

    [环境] python3.6+selenium3.0.2+Firefox50.0+win7 [定位方法] 1.方法:find_element_by_css_selector('xx') CSS的语法比 ...

  10. ZBrush中如何将一个模型应用在不同的图层

    我们经常会使用ZBrush®中的插入笔刷来实现快速建模,或者使用Insert笔刷创建人物四肢,那么在使用这些笔刷时,它默认是和所接触模型同在一个Subtool,如果您需要不同的材质或者雕刻手法,那么就 ...