前言:

被动学习Agent由固定的策略决定其行为。主动学习Agent必须自己决定采取什么行动。

具体方法是:

Agent将要学习一个包含所有行动结果概率的完整模型,而不仅仅是固定策略的模型;

接下来,Agent自身要对行动做出选择( 它需要学习的函数是由最优策略所决定的,这些效用遵循 Berman方程 );

最后的问题是每一步要做什么(在获得了对于学习到的模型而言最优的效用函数U之后,Agent能够通过使期望最大化的单步前瞻提取一个最优行动;或者它使用迭代策略,最优策略已经得到,所以它应该简单的执行最优策略所建议的行动)。

一、完整模型

Passive-ADP-Agent所使用的简单学习机制将做的很好。

二、探索

1、贪婪算法

一个ADP Agent在搜索路径时,每一步都遵循所学习的模型的最优策略的建议,被称为 贪婪Agent。

一般问题:选择最优策略是如何导致非最优结果的? 答案是:学习到的模型与真实环境中的模型并不相同;因而学习到的模型的最优可能不是真实环境中的最优。不幸的是,Agent并不知道真实环境是什么,所以它不能针对真实环境计算最优行动。

2、如何改进?

折中:贪婪Agent忽略的事实是行动不仅根据当前学习到的模型提供回报,他们也通过影响所接受的感知信息对真实模型的学习做出贡献。通过改进模型,Agent将在未来得到更高的回报。

方法:Agent必须在充分利用信息exploitation 以最大化回报——反映在其当前效用估计上,和探索exploration以及最大化长期利益之间进行折中。

单纯的充分利用信息要冒墨守成规的风险;那么单纯的探索对于提高一个人的知识是毫无用处的。

3、GLIE Greedy in the limit of infinite exploration

寻找最优搜索策略,在统计决策理论领域得到了深入的研究。对精确求解最优策略并没有一个固定的方法,但是可以提出一个合理的方案最终导致Agent的最优行动。技术上,任何这样的方案在无穷探索的极限下都必然是贪婪的。

一个GLIE方案必须在每个状态下的每个行动进行无限制次数的尝试,以避免一系列不常见的糟糕结果而错过最优行动的概率。一个ADP Agent使用这样的方案最终将学习到真实的环境模型。 一个GLIE方案最终还必须变得贪婪,以使得Agent的行动对于学习到(此时等同于真实的)真实模型而言 是最优的。

4、几种尝试

一种最简单的方式是:让Agent在1/t的时间片段内选择一个随机行动,而其他时刻走遵循贪婪策略。简单时序片段脱离法

另一种更为有效的方法是:给Agent很少尝试的行动进行加权,同时避免那些已经确信的具有最低效用的行动,实现方法为 改变约束方程,以便给相对来说尚未探索的状态——行动分配更高的效用估计。   本质上,会得到一个关于可能环境的乐观先验估计,并导致Agent 最初的行动过如同整个区域到处散布者几号的回报一样。

三、学习行动-效用函数

1、为一个主动ADP Agent构建一个主动时序差分学习,与被动情况最明显的变化是Agent不再有固定的策略,它学习效用函数U时,就需要学习一个模型以便能够通过单步前瞻基于U采取一个行动。

构建一个主动学习ADP Agent,随着训练序列的时间趋于无穷,TD算法与ADP算法收敛到相同的值。

2、Q-Learn作为一种时序TD方法,它学习 一种行动-效用表示 而不是学习效用。

后续:

参考:  DeepMind用ReinforcementLearning玩游戏

EnforceLearning-主动强化学习的更多相关文章

  1. 强化学习论文(Scalable agent alignment via reward modeling: a research direction)

     原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...

  2. 【整理】强化学习与MDP

    [入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的 ...

  3. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  4. (译) 强化学习 第一部分:Q-Learning 以及相关探索

    (译) 强化学习 第一部分:Q-Learning 以及相关探索 Q-Learning review: Q-Learning 的基础要点是:有一个关于环境状态S的表达式,这些状态中可能的动作 a,然后你 ...

  5. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  6. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  7. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  8. 强化学习之Q-learning ^_^

    许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做 ...

  9. 强化学习 - Q-learning Sarsa 和 DQN 的理解

    本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点, ...

  10. TensorLayer官方中文文档1.7.4:API – 强化学习

    API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of ...

随机推荐

  1. 【codeforces 768E】Game of Stones

    [题目链接]:http://codeforces.com/contest/768/problem/E [题意] NIM游戏的变种; 要求每一堆石头一次拿了x个之后,下一次就不能一次拿x个了; 问你结果 ...

  2. EXt js 学习笔记总结

    1. get . fly. getCmp .getBody .getDoc .getDom..    get-----ExtJs获取节点.dom.提供缓存机制  Ext.Element类是Ext对DO ...

  3. [poj1363]Rails_模拟_栈

    Rails poj-1363 题目大意:判断一个序列是否是1~n的合法出栈序列. 注释:$1\le n\le 10^4$. 想法:开始想到一种想法. 对于一段序列来讲,显然从首元素开始的连续小于尾元素 ...

  4. Hibernate注解开发教程

    目录 第一章 类级别注解 1-1 本章简介 一.Hibernate注解简介 二.JPA与Hibernate的关系 三.Hibernate注解的分类 1-2 准备工作 1-3 @Entity注解 1-4 ...

  5. lead 函数和 lag函数

    这两个函数的作用只能通过例子来解释,否则说不明白. 首先创建一个表 SQL> create table test (id number, name varchar2(8), val number ...

  6. tomcat理解

  7. [MongoDB]mongo命令行工具

    1.use dbname 自动创建 2.db.user.find() 空 show collections 空 show dbs 3.db.user.save({name:'',age:20}) db ...

  8. CF #321 (Div. 2) D

    不说了,爆内存好几次,后来醒起状态有重复... 状压+TSP #include <iostream> #include <cstdio> #include <cstrin ...

  9. gradle配置国内的镜像

    gradle配置国内的镜像 学习了:http://blog.csdn.net/stdupanda/article/details/72724181 http://blog.csdn.net/lj402 ...

  10. Axure RP一个专业的高速原型设计工具

    Axure RP是一个专业的高速原型设计工具.Axure(发音:Ack-sure),代表美国Axure公司.RP则是Rapid Prototyping(高速原型)的缩写. Axure简要介绍 Axur ...