kmeans实现文本聚类
需求
拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。
kmeans
谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。
分词
会使用一些工具进行分词,比如IKAnalyzer,同时也支持将停词去掉。
词库
刚开始分类效果不是很好,于是改进词库。对于特定行业的分词,为提高分词的准确性及专业性,可以收集更准确的词库用于分词。可以由搜狗http://pinyin.sogou.com/dict/搜索各种类别的词汇,自己下载下来再整理,它的格式为scel,可以使用深蓝词汇转换工具转成txt方便使用。
特征集
特征集的确定是文本向量化的第一步,只有特征集确定好了才能进一步确定向量的值,那么怎么确定特征集呢?一般的做法可以是将所有样本的词都提取出来作为特征集。比如我们有两个文本 “小学生上学”和“股票大跌”,那特征集就是{“小学生”,”上学”,”股票”,”大跌”}。
特征权重
向量化第二部就是确定特征集的权重,特征集可以看成是向量的维数,而对于每个样本来说就需要确定每个维度的值了,这个值就可以看成是特征的权重,常常用TF-IDF作为值。TF-IDF又是什么?简单来说TF就是某文档中某个term出现的次数,而IDF即逆文档频率,可由下面公式计算:
其中,T为统计样本中总文档数,t为包含某term的文档数。
TF和IDF的相乘则为特征权重。
特征降维
其实就是通过某种方法选择出比较相关的一些特征,将一些无关的特征去掉,达到特征降维效果。比如可以通过卡方检验,这里选择了用其他方式,提取热词。即认为每个文档的热词能代表该文档,由热词组成特征。
主要代码
public int[] learn(List<String> textList) {
List<String> vectorList = VectorUtil.getVectorDimension(textList);
double[][] datas = VectorUtil.getVector(textList.size(), vectorList, idf);
KMeans kmeans = new KMeans(datas, K, ITERATE);
return kmeans.getClusterLabel();
}
Github
https://github.com/sea-boat/TextAnalyzer
========广告时间========
鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。
=========================
kmeans实现文本聚类的更多相关文章
- K-means算法及文本聚类实践
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...
- [转]python进行中文文本聚类(切词以及Kmeans聚类)
简介 查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关于Python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关于文本聚类的Kmeans聚类的原 ...
- pyhanlp 文本聚类详细介绍
文本聚类 文本聚类简单点的来说就是将文本视作一个样本,在其上面进行聚类操作.但是与我们机器学习中常用的聚类操作不同之处在于. 我们的聚类对象不是直接的文本本身,而是文本提取出来的特征.因此如何提取特征 ...
- 文本挖掘之文本聚类(MapReduce)
刘 勇 Email:lyssym@sina.com 简介 针对大数量的文本数据,采用单线程处理时,一方面消耗较长处理时间,另一方面对大量数据的I/O操作也会消耗较长处理时间,同时对内存空间的消耗也是 ...
- 文本挖掘之文本聚类(DBSCAN)
刘 勇 Email:lyssym@sina.com 简介 鉴于基于划分的文本聚类方法只能识别球形的聚类,因此本文对基于密度的文本聚类算法展开研究.DBSCAN(Density-Based Spat ...
- 10.HanLP实现k均值--文本聚类
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 10. 文本聚类 正所谓物以类聚,人以群分.人们在获取数据时需要整理,将相似的数据 ...
- Python实现kMeans(k均值聚类)
Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...
- 灵玖软件NLPIRParser智能文本聚类
随着互联网的迅猛发展,信息的爆炸式增加,信息超载问题变的越来越严重,信息的更新率也越来越高,用户在信息海洋里查找信息就像大海捞针一样.搜索引擎服务应运而生,在一定程度上满足了用户查找信息的需要.然而互 ...
- 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...
随机推荐
- 【ML数学知识】极大似然估计
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...
- Mac 升级node与npm
第一步,先查看本机node.js版本: node -v 第二步,清除node.js的cache: sudo npm cache clean -f 第三步,安装 n 工具,这个工具是专门用来管理node ...
- [转载]Eclipse的常用快捷键
常用的快捷键 ctrl+1:快速修复错误 ctrl+shift+L :查看快捷键 alt+?或alt+/:自动补全代码或者提示代码 ctrl+o:快速outline视图 ctrl+shift+r:打开 ...
- Memcached gets 命令
Memcached gets 命令获取带有 CAS 令牌存 的 value(数据值) ,如果 key 不存在,则返回空. 语法: gets 命令的基本语法格式如下: gets key 多个 key 使 ...
- UML类图概述、设计模式
深入浅出UML类图(http://blog.csdn.net/lovelion/article/details/7843308) 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相 ...
- 关于hugepages 3.txt
关于hugepages 3.txt --//有一段时间我一直强调安装oracle一定要配置hugepage,因为现在的服务器内存越来越大,如果还使用4K的页面表,如果内存表占用内存巨大, --//特别 ...
- 如何在Ubuntu Linux上安装Oracle Java
不错文档,希望地址永久可用,url:http://zh.wikihow.com/%E5%9C%A8Ubuntu-Linux%E4%B8%8A%E5%AE%89%E8%A3%85Oracle-Java
- IDEA的Tomcat配置Web的项目创建以及Servlet简单运行。
相关软件: 1.IDEA编译器 2.JDK 3.Tomcat (相关软件都可以到官网上下载,老表提示:不要下载最新版本因为不要做试验品) IDEA的安装非常简单,找好安装的盘,n ...
- 15.并发容器之ConcurrentLinkedQueue
1.ConcurrentLinkedQueue简介 在单线程编程中我们会经常用到一些集合类,比如ArrayList,HashMap等,但是这些类都不是线程安全的类.在面试中也经常会有一些考点,比如Ar ...
- tinyxml解析xml
基于tinyxml做的简单的xml解析. 1.创建xml bool CreateXmlFile(string& szFileName) {//创建xml文件,szFilePath为文件保存的路 ...