Unique Binary Search Trees,Unique Binary Search Trees2 生成二叉排序树
Unique Binary Search Trees:求生成二叉排序树的个数。
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
算法分析:类似上阶梯,简单的动态规划问题。当根节点为i时,比i小的节点有i-1个,比i大的节点有n-i个,所以,i为根节点能够生成二叉排序树的个数是
nums[n] += nums[i-1]*nums[n-i],i从1到n。
public class UniqueBinarySearchTrees
{
public int numTrees(int n)
{
if(n <= 0)
{
return 0;
}
int[] res = new int[n+1];
res[0] = 1;
res[1] = 1;
for(int i = 2; i <= n; i ++)
{
for(int j = 1; j <= i; j ++)//j为根节点
{
res[i] += res[j-1]*res[i-j];
}
}
return res[n];
}
}
Unique Binary Search Trees2:求生成二叉排序树的根节点的集合
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
算法分析:这个不是求个数,而是求生成树根节点。使用递归。
public class UniqueBinarySearchTreesII
{
public List<TreeNode> generateTrees(int n)
{
if(n <= 0)
{
return new ArrayList<TreeNode>();
} return helper(1, n);
} public List<TreeNode> helper(int m, int n)
{
List<TreeNode> res = new ArrayList<>();
if(m > n)
{
res.add(null);
return res;
} for(int i = m; i <= n; i ++)
{
//i为根节点
List<TreeNode> ls = helper(m, i-1);//i节点的左子树
List<TreeNode> rs = helper(i+1, n);//i节点的右子树
for(TreeNode l : ls)
{
for(TreeNode r : rs)
{
TreeNode curr = new TreeNode(i);
curr.left = l;
curr.right = r;
res.add(curr);
}
}
}
return res;
}
}
Unique Binary Search Trees,Unique Binary Search Trees2 生成二叉排序树的更多相关文章
- 41. Unique Binary Search Trees && Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- Unique Binary Search Trees,Unique Binary Search Trees II
Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given ...
- Leetcode:Unique Binary Search Trees & Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- LeetCode之“动态规划”:Unique Binary Search Trees && Unique Binary Search Trees II
1. Unique Binary Search Trees 题目链接 题目要求: Given n, how many structurally unique BST's (binary search ...
- 将百分制转换为5分制的算法 Binary Search Tree ordered binary tree sorted binary tree Huffman Tree
1.二叉搜索树:去一个陌生的城市问路到目的地: for each node, all elements in its left subtree are less-or-equal to the nod ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 2 Unique Binary Search Trees II_Leetcode
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 【leetcode】Unique Binary Search Trees (#96)
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
随机推荐
- 排序算法review<2>--Shell 排序
shell排序方法也是一种插入排序算法,于1959年由D.L.Shell提出,其基本方法是:首先将带排序文件分为d1(d1<n)组,将所有彼此之间间隔为d和d的倍数的记录放在一组中,然后在组内进 ...
- python发送邮件的2种方式
发送邮件的2种方式1.匿名发送 smtpObj = smtplib.SMTP(host, port) smtpObj.sendmail(from_addr, to_addrs, message.as_ ...
- java7(2)——使用mutilcatch注意事项
从java7推出mutilcatch后,到现在都少有看到人使用,可能是这个功能真正用起来,比起多个catch并不快多少,而且现在的工IDE具太厉害了,什么都有快捷键!说是这么说,我们还是得了解一下如何 ...
- Android Volley全然解析(四),带你从源代码的角度理解Volley
版权声明:本文出自郭霖的博客,转载必须注明出处. https://blog.csdn.net/sinyu890807/article/details/17656437 转载请注明出处:http://b ...
- Visual Studio 起始页面关闭新闻等
[工具]->[选项]->[环境]->[启动] 将“下载内容的时间间隔”一项的勾选去掉,然后确定保存.这样,就大功告成啦
- Kafka笔记整理(二):Kafka Java API使用
下面的测试代码使用的都是下面的topic: $ kafka-topics.sh --describe hadoop --zookeeper uplooking01:,uplooking02:,uplo ...
- Linux的日志管理
Linux日志的管理 日志:记录了你几乎所有的操作记录,用于系统的审核,故障的排除.日志文件永久存放在日志目录中,系统日志保存在/var/log中 rsyslog 按照日志类型分类,把所有日志记录到/ ...
- rf调参小结
转自http://www.cnblogs.com/pinard/p/6160412.html 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomF ...
- golang在线手册汇总
1. golang官网 https://golang.org/ 2. golang中国 http://www.golangtc.com/ http://godoc.golangtc.com/pkg/ ...
- arya使用流程
1.github中的项目clone到本地(路径在最后),然后将arya文件夹复制到你的django工程中作为一个独立的app,该app实现了RBAC(基于角色的权限访问控制Role-Based Acc ...