Unique Binary Search Trees:求生成二叉排序树的个数。

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

算法分析:类似上阶梯,简单的动态规划问题。当根节点为i时,比i小的节点有i-1个,比i大的节点有n-i个,所以,i为根节点能够生成二叉排序树的个数是

nums[n] += nums[i-1]*nums[n-i],i从1到n。

public class UniqueBinarySearchTrees
{
public int numTrees(int n)
{
if(n <= 0)
{
return 0;
}
int[] res = new int[n+1];
res[0] = 1;
res[1] = 1;
for(int i = 2; i <= n; i ++)
{
for(int j = 1; j <= i; j ++)//j为根节点
{
res[i] += res[j-1]*res[i-j];
}
}
return res[n];
}
}

Unique Binary Search Trees2:求生成二叉排序树的根节点的集合

Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

算法分析:这个不是求个数,而是求生成树根节点。使用递归。

public class UniqueBinarySearchTreesII
{
public List<TreeNode> generateTrees(int n)
{
if(n <= 0)
{
return new ArrayList<TreeNode>();
} return helper(1, n);
} public List<TreeNode> helper(int m, int n)
{
List<TreeNode> res = new ArrayList<>();
if(m > n)
{
res.add(null);
return res;
} for(int i = m; i <= n; i ++)
{
//i为根节点
List<TreeNode> ls = helper(m, i-1);//i节点的左子树
List<TreeNode> rs = helper(i+1, n);//i节点的右子树
for(TreeNode l : ls)
{
for(TreeNode r : rs)
{
TreeNode curr = new TreeNode(i);
curr.left = l;
curr.right = r;
res.add(curr);
}
}
}
return res;
}
}

Unique Binary Search Trees,Unique Binary Search Trees2 生成二叉排序树的更多相关文章

  1. 41. Unique Binary Search Trees && Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  2. Unique Binary Search Trees,Unique Binary Search Trees II

    Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given  ...

  3. Leetcode:Unique Binary Search Trees & Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  4. LeetCode之“动态规划”:Unique Binary Search Trees && Unique Binary Search Trees II

    1. Unique Binary Search Trees 题目链接 题目要求: Given n, how many structurally unique BST's (binary search ...

  5. 将百分制转换为5分制的算法 Binary Search Tree ordered binary tree sorted binary tree Huffman Tree

    1.二叉搜索树:去一个陌生的城市问路到目的地: for each node, all elements in its left subtree are less-or-equal to the nod ...

  6. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  7. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  8. 2 Unique Binary Search Trees II_Leetcode

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  9. 【leetcode】Unique Binary Search Trees (#96)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

随机推荐

  1. 找新朋友---hdu1286(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1286 欧拉函数:对正整数n,欧拉函数是求少于n的数中与n互质的数的数目: 素数(质数)指在一个大于1的 ...

  2. (0.2.6)Mysql安装——编译安装

    (0.2.6)Mysql安装——编译安装 待完善

  3. 以EJB谈J2EE规范

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xiaoduishenghuogo/article/details/24800703 接触J2EE的时 ...

  4. sscanf,sscanf

    在#include<stdio.h> 定义函数 int sscanf (const char *str,const char * format,........); 函数说明: sscan ...

  5. Hadoop2.7.3+spark2.1.0+hbase0.98分布式集群部署

    运行环境配置(10.79.115.111-114) 1.关闭防火墙与selinux 关闭防火墙: CentOS 7.x默认使用的是firewall作为防火墙. systemctl stop firew ...

  6. SpringMVC的其他功能使用

    一.SpringMVC支持在控制器的业务方法中写入参数作为传递过来的变量 @Controller @RequestMapping(value="/kaiye") public cl ...

  7. 理解ASM的Extent

    理解ASM的Extent 分类: Oracle 2017-04-14 10:19:44   ASM中分配空间的单位是AU,Extent包含1个或多个AU.在11g之前,1个Extent对应1个AU.而 ...

  8. matplotlib绘制饼状图

    源自http://blog.csdn.net/skyli114/article/details/77508430?ticket=ST-41707-PzNbUDGt6R5KYl3TkWDg-passpo ...

  9. 工作笔记-javascript-网络层封装

    /** * @Author Mona * @Date 2016-12-08 * @description 网络层封装 */ /** * 封装基本请求方式 */ window.BaseRequest = ...

  10. python全栈开发从入门到放弃之初识面向对象

    面向过程 VS 面向对象 面向过程的程序设计的核心是过程(流水线式思维),过程即解决问题的步骤,面向过程的设计就好比精心设计好一条流水线,考虑周全什么时候处理什么东西. 优点是:极大的降低了写程序的复 ...