51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个区间[a,b],S(a,b) = miu(a) + miu(a + 1) + … miu(b)。
例如:S(3, 10) = miu(3) + miu(4) + miu(5) + miu(6) + miu(7) + miu(8) + miu(9) + miu(10)
= -1 + 0 + -1 + 1 + -1 + 0 + 0 + 1 = -1。
Input
输入包括两个数a, b,中间用空格分隔(2 <= a <= b <= 10^10)
Output
输出S(a, b)。
Input示例
3 10
Output示例
-1
杜教筛板子,佬下午讲了我就写一写
考虑令h=μ∗I
显然h=∑d∣nμ(d)∗I(nd)=[n=1]
现在求一下h的前缀和sumh(n)=∑i=1nh(i)=1
那么同时我们考虑sumh(n)=∑i=1n∑d∣nμ(d)∗I(nd)
sumh(n)=∑i=1n∑d∣nμ(d)
sumh(n)=∑d=1n∑i=1⌊nd⌋μ(d)
sumh(n)=∑d=1n∑i=1n[i≤⌊nd⌋]μ(d)
sumh(n)=∑i=1n∑d=1n[d≤⌊ni⌋]μ(d)
sumh(n)=∑i=1n∑d=1⌊ni⌋μ(d)
sumh(n)=∑d=1nμ(d)+∑i=2n∑d=1⌊ni⌋μ(d)
令p(n)=∑d=1μ(d)
可以得到sumh(n)=1=p(n)+∑i=2np(⌊ni⌋)
然后就可以得到最后的式子p(n)=1−∑i=2np(⌊ni⌋)
至于杜教筛的复杂度我就不说了
然后这题需要预处理一部分的前缀和来优化,然后就可以了
然后因为我很懒,就不想写hash table,然后就map代替了
问题不大
#include<bits/stdc++.h>
using namespace std;
#define N 5000010
#define LL long long
map<LL,LL> mp;
LL mu[N],pri[N],vis[N],tot=;
void init(){
mu[]=;
for(int i=;i<N;i++){
if(!vis[i])pri[++tot]=i,mu[i]=-;
for(int j=;j<=tot&&pri[j]*i<N;j++){
vis[i*pri[j]]=;
if(i%pri[j]==)mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=;i<N;i++)mu[i]+=mu[i-];
}
LL Mertens(LL n){
if(n<N)return mu[n];
if(mp[n])return mp[n];
LL ans=,j=;
for(LL i=;i<=n;i=j+){
j=n/(n/i);
ans-=(j-i+)*Mertens(n/i);
}
return mp[n]=ans;
}
int main(){
init();
LL l,r;scanf("%lld%lld",&l,&r);
printf("%lld",Mertens(r)-Mertens(l-));
return ;
}
51nod 1244 莫比乌斯函数之和 【杜教筛】的更多相关文章
- 51Nod.1244.莫比乌斯函数之和(杜教筛)
题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; in ...
- 51 NOD 1244 莫比乌斯函数之和(杜教筛)
1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...
- 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛
题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...
- 51nod1244 莫比乌斯函数之和 杜教筛
虽然都写了,过也过了,还是觉得杜教筛的复杂度好玄学 设f*g=h,∑f=S, 则∑h=∑f(i)S(n/i下取整) 把i=1时单独拿出来,得到 S(n)=(∑h-∑2->n f(i)S(n/i下 ...
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
- 51nod 1244 莫比乌斯函数之和
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- 【51nod】1239 欧拉函数之和 杜教筛
[题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...
随机推荐
- 04_zookeeper客户端使用及常用命令
zookeeper客户端的使用 (1) 首先找到zookeeper自带客户端的位置 简单来说,zookeeper自带客户端位于zookeeper安装目录的bin目录下,以我的为例: (2) 运 ...
- 在ajax请求下的缓存机制
1.在服务端加 header(“Cache-Control: no-cache, must-revalidate”);2.在ajax发送请求前加上 anyAjaxObj.setRequestHeade ...
- IO与NIO
IO IO概念: Java IO Java IO 即java的输入系统,不管我们编写任何种语言,都难免输入输出相关的媒介打交道,其实和媒介进行IO的过程是十分复杂的,还要考虑的因素特别多,比如我们要考 ...
- Fedora安装opengl
Fedora和Ubuntu下安装OpenGL开发环境配置(我整理的)OpenGL开发库的详细介绍fedora23 安装OpenGL 开发OpenGL工程需要3个库文件和对应的头文件:libglut.s ...
- Maven 三种archetype说明
新建Maven project项目时,需要选择archetype. 那么,什么是archetype? archetype的意思就是模板原型的意思,原型是一个Maven项目模板工具包.一个原型被定义为从 ...
- FastDFS图片服务器
首先要转一个FastDFS,这个很难装.一般由运维人员安装. git项目fastdfs-client-java由happy fish开发的,down下来后import到项目中maven install ...
- Pytorch入门笔记
import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): #nn. ...
- C++复习7.虚表的概念
C++ 类的虚表 20130929 关键技术:封装.继承.组合.虚函数.抽象基类.动态绑定.多态性等等 1.首先整理一下在阿里巴巴面试遇到的函数虚表的问题. 在C++中的Class中的函数式存储在Cl ...
- 【第三方类库】underscore.js源码---each forEach 每次迭代跟{}比较的疑惑
var each = _.each = _.forEach = function(obj, iterator, context) { if (obj == null) return; //首先判断是否 ...
- iOS如何直接跳转到App Store
在iOS应用中如何直接跳转到AppStore里面?其实这个问题很简单,首先拿到你要跳转到的AppStore地址(URL) 例如:https://itunes.apple.com/us/app/中久便利 ...