【插头DP】BZOJ1814-Formula
【题目大意】
给出一个m*n的矩阵里面有一些格子为障碍物,求经过所有非障碍格子的哈密顿回路个数。
【思路】
最典型的插头DP。分为三种情况:
(1)当前格子既没有上插头也没有左插头。
如果下边和右边都没有障碍,新建连同分量。
(2)如果只有左插头或者右插头。
延伸或者拐弯,当然也要判断有没有障碍。
(3)上插头和左插头都没有。
1. 如果两个插头不连通(编号不一样),那么将两个插头所处的连通分量合并,标记相同的连通块标号,O(n)扫描保证最小表示;
2. 如果已经连通,相当于出现了一个回路,这种情况只能出现在最后一个非障碍格子。
由于状态非常多,用hash表存储状态。
decode和encode注意一下,这里不赘述了。
【错误点】
注意一下ch要开得够大,具体见代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=;
const int HASH=;
int ex,ey;
int m,n;
int maze[MAXN][MAXN];
int code[MAXN],ch[MAXN];
struct HashMap
{
vector<int> hash[HASH];//存储f和state的下标
vector<ll> f,state;//存储对应的方案数和状态
void init()
{
for (int i=;i<HASH;i++) vector<int>().swap(hash[i]);
vector<ll>().swap(f);
vector<ll>().swap(state);
}
void push(ll st,ll ans)
{
int h=st%HASH;
for (int i=;i<hash[h].size();i++)
{
int now=hash[h][i];
if (state[now]==st)//如果已经存储了当前状态,直接累加
{
f[now]+=ans;
return;
}
}
//如果没有存储过当前状态,累加
state.push_back(st);
f.push_back(ans);
hash[h].push_back(state.size()-);
}
}dp[]; void decode(ll st)
{
memset(code,,sizeof(code));
for (int i=n;i>=;i--)
{
code[i]=st&;//每三位代表一个信息
st>>=;
}
} ll encode()
//用最小表示法重新编码
{
int cnt=;
memset(ch,-,sizeof(ch));
ch[]=;
long long st=;
for (int i=;i<=n;i++)
{
if (ch[code[i]]==-) ch[code[i]]=cnt++;
code[i]=ch[code[i]];
st<<=;
st|=code[i];
}
return st;
} void shift()
{
for (int i=n;i>;i--) code[i]=code[i-];
code[]=;
} void dpblank(int i,int j,int cur)
{
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
int left=code[j-];//左插头
int up=code[j];//上插头 /*如果上下插头都没有*/
if (!left && !up)
{
if (maze[i][j+] && maze[i+][j])
{
code[j-]=code[j]=MAXN-;
//这里只要随便设置一个大数即可 //【attention】这里千万不可以设置成MAXN,否则ch数组会抱★★★★★★★★ //因为encode会重新用最小表示法编码
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*只有上插头或者只有左插头*/
if ((left&&(!up))||((!left)&&up))
{ int t=left|up;
if (maze[i][j+])//右边没有障碍
{
code[j-]=;
code[j]=t;
dp[cur].push(encode(),dp[-cur].f[k]);
}
if (maze[i+][j])//下面没有障碍
{
code[j-]=t;
code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*上插头和右插头都有*/
if (left && up)
{
if (left==up)
{
if (i==ex && j==ey)
{
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
else
{
code[j-]=code[j]=;
for (int t=;t<=n;t++)
if (code[t]==up) code[t]=left;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
}
} void dpblock(int i,int j,int cur)
{
int k=;
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} void solve()
{
int cur=;
ll ans=;
dp[cur].init();
dp[cur].push(,);//DP数组初始化
for (int i=;i<=m;i++)
for (int j=;j<=n;j++)
{
cur^=;
dp[cur].init();
if (maze[i][j]) dpblank(i,j,cur);
else dpblock(i,j,cur); }
for (int i=;i<dp[cur].state.size();i++)
ans+=dp[cur].f[i];
printf("%lld",ans);
} void init()
{
memset(maze,,sizeof(maze));
ex=ey=;
for (int i=;i<=m;i++)
{
char str[MAXN];
scanf("%s",str);
for (int j=;j<n;j++)
{
if (str[j]=='.')
{
ex=i;
ey=j+;
maze[i][j+]=;
}
}
}
} int main()
{
while (scanf("%d%d",&m,&n)!=EOF)
{
init();
if (ex==) puts("");//如果没有一个是空格的话直接输出0
else solve();
}
return ;
}
【插头DP】BZOJ1814-Formula的更多相关文章
- 【BZOJ1814】Ural 1519 Formula 1 (插头dp)
[BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...
- 【BZOJ1814】Ural 1519 Formula 1 插头DP
[BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...
- bzoj1814 Ural 1519 Formula 1(插头dp模板题)
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 924 Solved: 351[Submit][Sta ...
- bzoj1814 Ural 1519 Formula 1(插头DP)
对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...
- 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)
1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...
- 【Ural】1519. Formula 1 插头DP
[题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...
- RUAL1519 Formula 1 【插头DP】
RUAL1519 Formula 1 Background Regardless of the fact, that Vologda could not get rights to hold the ...
- URAL 1519 Formula 1(插头DP,入门题)
Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...
- URAL1519 Formula 1 —— 插头DP
题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...
- ural 1519 Formula 1(插头dp)
1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...
随机推荐
- Tomcat面试题目
1.tomcat给你你怎样去调优? 1. JVM参数调优:-Xms<size> 表示JVM初始化堆的大小,-Xmx<size>表示JVM堆的最大值.这两个值的大小一般根据需要进 ...
- react input 设置默认值
1.text类型 <input type="text" value={默认值} /> ,这种写法可以显示默认值,但不能对输入框进行编辑 正确写法: <input ...
- c语言学习笔记.数组.
数组: 可以存储一个固定大小的相同类型元素的顺序集合,比如int类型的数组.float类型的数组,里面存放的数据称为“元素”. 所有的数组都是由连续的内存位置组成.最低的地址对应第一个元素,最高的地址 ...
- okhttp3使用详解
http://blog.csdn.net/itachi85/article/details/51190687
- HMM的概述(五个基本元素、两个假设、三个解决的问题)
一.五个基本元素 HMM是个五元组 λ =( S, O , π ,A,B) S:状态值集合,O:观察值集合,π:初始化概率,A:状态转移概率矩阵,B:给定状态下,观察值概率矩阵 二.两个假设 HM ...
- bootstrap带图标的按钮与图标做连接
bootstrap通过引入bootstrap的JS与css文件,给元素添加class属性即可. 使用图标只需要加入一个span,class属性设置为对应的图标属性即可.图标对应的class属性可以参考 ...
- password passphrase passcode 的区别
In general, passphrases are long passwords and passcodes are numeric-only passwords.
- 自定义ISO结构
流程: 1.OS安装 1.1 网卡配置 1.2 密码 1.3 语言 1.4 时区 1.5 分区 1.6 rpms ... 2.软件安装 2.1 BIC Server 2.2 APP Server 2. ...
- 64_r1
R-3.4.0-2.fc26.x86_64.rpm 15-May-2017 14:49 31030 R-ALL-1.6.0-4.fc26.noarch.rpm 17-Feb-2017 22:05 11 ...
- 191.Number of 1Bits---位运算---《剑指offer》10
题目链接:https://leetcode.com/problems/number-of-1-bits/description/ 题目大意:与338题类似,求解某个无符号32位整数的二进制表示的1的个 ...