【题目大意】

给出一个m*n的矩阵里面有一些格子为障碍物,求经过所有非障碍格子的哈密顿回路个数。

【思路】

最典型的插头DP。分为三种情况:

(1)当前格子既没有上插头也没有左插头。

如果下边和右边都没有障碍,新建连同分量。

(2)如果只有左插头或者右插头。

延伸或者拐弯,当然也要判断有没有障碍。

(3)上插头和左插头都没有。

1. 如果两个插头不连通(编号不一样),那么将两个插头所处的连通分量合并,标记相同的连通块标号,O(n)扫描保证最小表示;
2. 如果已经连通,相当于出现了一个回路,这种情况只能出现在最后一个非障碍格子。

由于状态非常多,用hash表存储状态。

decode和encode注意一下,这里不赘述了。

【错误点】

注意一下ch要开得够大,具体见代码。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=;
const int HASH=;
int ex,ey;
int m,n;
int maze[MAXN][MAXN];
int code[MAXN],ch[MAXN];
struct HashMap
{
vector<int> hash[HASH];//存储f和state的下标
vector<ll> f,state;//存储对应的方案数和状态
void init()
{
for (int i=;i<HASH;i++) vector<int>().swap(hash[i]);
vector<ll>().swap(f);
vector<ll>().swap(state);
}
void push(ll st,ll ans)
{
int h=st%HASH;
for (int i=;i<hash[h].size();i++)
{
int now=hash[h][i];
if (state[now]==st)//如果已经存储了当前状态,直接累加
{
f[now]+=ans;
return;
}
}
//如果没有存储过当前状态,累加
state.push_back(st);
f.push_back(ans);
hash[h].push_back(state.size()-);
}
}dp[]; void decode(ll st)
{
memset(code,,sizeof(code));
for (int i=n;i>=;i--)
{
code[i]=st&;//每三位代表一个信息
st>>=;
}
} ll encode()
//用最小表示法重新编码
{
int cnt=;
memset(ch,-,sizeof(ch));
ch[]=;
long long st=;
for (int i=;i<=n;i++)
{
if (ch[code[i]]==-) ch[code[i]]=cnt++;
code[i]=ch[code[i]];
st<<=;
st|=code[i];
}
return st;
} void shift()
{
for (int i=n;i>;i--) code[i]=code[i-];
code[]=;
} void dpblank(int i,int j,int cur)
{
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
int left=code[j-];//左插头
int up=code[j];//上插头 /*如果上下插头都没有*/
if (!left && !up)
{
if (maze[i][j+] && maze[i+][j])
{
code[j-]=code[j]=MAXN-;
//这里只要随便设置一个大数即可 //【attention】这里千万不可以设置成MAXN,否则ch数组会抱★★★★★★★★ //因为encode会重新用最小表示法编码
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*只有上插头或者只有左插头*/
if ((left&&(!up))||((!left)&&up))
{ int t=left|up;
if (maze[i][j+])//右边没有障碍
{
code[j-]=;
code[j]=t;
dp[cur].push(encode(),dp[-cur].f[k]);
}
if (maze[i+][j])//下面没有障碍
{
code[j-]=t;
code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*上插头和右插头都有*/
if (left && up)
{
if (left==up)
{
if (i==ex && j==ey)
{
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
else
{
code[j-]=code[j]=;
for (int t=;t<=n;t++)
if (code[t]==up) code[t]=left;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
}
} void dpblock(int i,int j,int cur)
{
int k=;
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} void solve()
{
int cur=;
ll ans=;
dp[cur].init();
dp[cur].push(,);//DP数组初始化
for (int i=;i<=m;i++)
for (int j=;j<=n;j++)
{
cur^=;
dp[cur].init();
if (maze[i][j]) dpblank(i,j,cur);
else dpblock(i,j,cur); }
for (int i=;i<dp[cur].state.size();i++)
ans+=dp[cur].f[i];
printf("%lld",ans);
} void init()
{
memset(maze,,sizeof(maze));
ex=ey=;
for (int i=;i<=m;i++)
{
char str[MAXN];
scanf("%s",str);
for (int j=;j<n;j++)
{
if (str[j]=='.')
{
ex=i;
ey=j+;
maze[i][j+]=;
}
}
}
} int main()
{
while (scanf("%d%d",&m,&n)!=EOF)
{
init();
if (ex==) puts("");//如果没有一个是空格的话直接输出0
else solve();
}
return ;
}

【插头DP】BZOJ1814-Formula的更多相关文章

  1. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  2. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  3. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  4. bzoj1814 Ural 1519 Formula 1(插头DP)

    对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...

  5. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  6. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  7. RUAL1519 Formula 1 【插头DP】

    RUAL1519 Formula 1 Background Regardless of the fact, that Vologda could not get rights to hold the ...

  8. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  9. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  10. ural 1519 Formula 1(插头dp)

    1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...

随机推荐

  1. Django之原生Ajax操作

    Ajax主要就是使用 [XmlHttpRequest]对象来完成请求的操作,该对象在主流浏览器中均存在(除早起的IE),Ajax首次出现IE5.5中存在(ActiveX控件). 先通过代码来看看Aja ...

  2. vs2012 error c4996: 'fopen': This function or variable may be unsafe

    1>------ 已启动生成: 项目: 20130925, 配置: Debug Win32 ------1>  stdafx.cpp1>d:\code\20130925\201309 ...

  3. TCP 传输控制协议(转)

    开头先说几个协议: IP:网际协议 TCP:传输控制协议 Http:超文本传输协议 AMQP:高级消息队列协议 一:TCP是什么? TCP(Transmission Control Protocol ...

  4. 15 - reduce-pratial偏函数-lsu_cache

    目录 介绍 1 reduce方法 2 partial方法(偏函数) 2.1 partial方法基本使用 2.2 partial原码分析 2.3 functools.warps实现分析 3 lsu_ca ...

  5. MySQL Warning: Using a password on the command line interface can be insecure.解决办法

    转自 http://www.cnblogs.com/sunss/p/6256706.html  被一个小朋友问到,直接公布答案: If your MySQL client/server version ...

  6. 《跟老齐学Python Django实战》读后感

    1.说一下这本书,讲解的很细致,内容选取足够入门Django. 2.在学习这本书要注意的几点: <1>如果你想跟着敲这本书的代码必须要安装:Django版本1.10.1(当然也可以玩玩新版 ...

  7. 6.Python3标准库--数学运算

    ''' 作为一种通用的变成语言,Python经常用来解决数学问题.它包含一些用于管理整数和浮点数的内置类型,这很适合完成一般应用中可能出现的基本数学运算. 而标准库中包含一些用于满足更高级需求的模块. ...

  8. jekyll简单使用

    jekyll build # => 当前文件夹中的内容将会生成到 ./site 文件夹中. jekyll build –destination <destination> # =&g ...

  9. JAVA实现图的邻接表以及DFS

    一:定义邻接表结构储存图 package 图的遍历; //邻接表实现图的建立 //储存边 class EdgeNode { int index; // 习惯了用index,其实标准写法是(adjVer ...

  10. WordPress插件:WP No Category Base 去除分类Category目录

    不少折腾WordPress的朋友都希望去掉分类链接中的 /category/ 目录标志,网上很多这方面的教程,据倡萌所知,除了使用 WP No Category Base 插件(或类似插件),其他的方 ...