【题目大意】

给出一个m*n的矩阵里面有一些格子为障碍物,求经过所有非障碍格子的哈密顿回路个数。

【思路】

最典型的插头DP。分为三种情况:

(1)当前格子既没有上插头也没有左插头。

如果下边和右边都没有障碍,新建连同分量。

(2)如果只有左插头或者右插头。

延伸或者拐弯,当然也要判断有没有障碍。

(3)上插头和左插头都没有。

1. 如果两个插头不连通(编号不一样),那么将两个插头所处的连通分量合并,标记相同的连通块标号,O(n)扫描保证最小表示;
2. 如果已经连通,相当于出现了一个回路,这种情况只能出现在最后一个非障碍格子。

由于状态非常多,用hash表存储状态。

decode和encode注意一下,这里不赘述了。

【错误点】

注意一下ch要开得够大,具体见代码。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=;
const int HASH=;
int ex,ey;
int m,n;
int maze[MAXN][MAXN];
int code[MAXN],ch[MAXN];
struct HashMap
{
vector<int> hash[HASH];//存储f和state的下标
vector<ll> f,state;//存储对应的方案数和状态
void init()
{
for (int i=;i<HASH;i++) vector<int>().swap(hash[i]);
vector<ll>().swap(f);
vector<ll>().swap(state);
}
void push(ll st,ll ans)
{
int h=st%HASH;
for (int i=;i<hash[h].size();i++)
{
int now=hash[h][i];
if (state[now]==st)//如果已经存储了当前状态,直接累加
{
f[now]+=ans;
return;
}
}
//如果没有存储过当前状态,累加
state.push_back(st);
f.push_back(ans);
hash[h].push_back(state.size()-);
}
}dp[]; void decode(ll st)
{
memset(code,,sizeof(code));
for (int i=n;i>=;i--)
{
code[i]=st&;//每三位代表一个信息
st>>=;
}
} ll encode()
//用最小表示法重新编码
{
int cnt=;
memset(ch,-,sizeof(ch));
ch[]=;
long long st=;
for (int i=;i<=n;i++)
{
if (ch[code[i]]==-) ch[code[i]]=cnt++;
code[i]=ch[code[i]];
st<<=;
st|=code[i];
}
return st;
} void shift()
{
for (int i=n;i>;i--) code[i]=code[i-];
code[]=;
} void dpblank(int i,int j,int cur)
{
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
int left=code[j-];//左插头
int up=code[j];//上插头 /*如果上下插头都没有*/
if (!left && !up)
{
if (maze[i][j+] && maze[i+][j])
{
code[j-]=code[j]=MAXN-;
//这里只要随便设置一个大数即可 //【attention】这里千万不可以设置成MAXN,否则ch数组会抱★★★★★★★★ //因为encode会重新用最小表示法编码
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*只有上插头或者只有左插头*/
if ((left&&(!up))||((!left)&&up))
{ int t=left|up;
if (maze[i][j+])//右边没有障碍
{
code[j-]=;
code[j]=t;
dp[cur].push(encode(),dp[-cur].f[k]);
}
if (maze[i+][j])//下面没有障碍
{
code[j-]=t;
code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*上插头和右插头都有*/
if (left && up)
{
if (left==up)
{
if (i==ex && j==ey)
{
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
else
{
code[j-]=code[j]=;
for (int t=;t<=n;t++)
if (code[t]==up) code[t]=left;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
}
} void dpblock(int i,int j,int cur)
{
int k=;
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} void solve()
{
int cur=;
ll ans=;
dp[cur].init();
dp[cur].push(,);//DP数组初始化
for (int i=;i<=m;i++)
for (int j=;j<=n;j++)
{
cur^=;
dp[cur].init();
if (maze[i][j]) dpblank(i,j,cur);
else dpblock(i,j,cur); }
for (int i=;i<dp[cur].state.size();i++)
ans+=dp[cur].f[i];
printf("%lld",ans);
} void init()
{
memset(maze,,sizeof(maze));
ex=ey=;
for (int i=;i<=m;i++)
{
char str[MAXN];
scanf("%s",str);
for (int j=;j<n;j++)
{
if (str[j]=='.')
{
ex=i;
ey=j+;
maze[i][j+]=;
}
}
}
} int main()
{
while (scanf("%d%d",&m,&n)!=EOF)
{
init();
if (ex==) puts("");//如果没有一个是空格的话直接输出0
else solve();
}
return ;
}

【插头DP】BZOJ1814-Formula的更多相关文章

  1. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  2. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  3. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  4. bzoj1814 Ural 1519 Formula 1(插头DP)

    对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...

  5. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  6. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  7. RUAL1519 Formula 1 【插头DP】

    RUAL1519 Formula 1 Background Regardless of the fact, that Vologda could not get rights to hold the ...

  8. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  9. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  10. ural 1519 Formula 1(插头dp)

    1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...

随机推荐

  1. Tomcat面试题目

    1.tomcat给你你怎样去调优? 1. JVM参数调优:-Xms<size> 表示JVM初始化堆的大小,-Xmx<size>表示JVM堆的最大值.这两个值的大小一般根据需要进 ...

  2. react input 设置默认值

    1.text类型 <input type="text" value={默认值} />  ,这种写法可以显示默认值,但不能对输入框进行编辑 正确写法: <input ...

  3. c语言学习笔记.数组.

    数组: 可以存储一个固定大小的相同类型元素的顺序集合,比如int类型的数组.float类型的数组,里面存放的数据称为“元素”. 所有的数组都是由连续的内存位置组成.最低的地址对应第一个元素,最高的地址 ...

  4. okhttp3使用详解

    http://blog.csdn.net/itachi85/article/details/51190687

  5. HMM的概述(五个基本元素、两个假设、三个解决的问题)

    一.五个基本元素 HMM是个五元组 λ =( S, O , π ,A,B) S:状态值集合,O:观察值集合,π:初始化概率,A:状态转移概率矩阵,B:给定状态下,观察值概率矩阵   二.两个假设 HM ...

  6. bootstrap带图标的按钮与图标做连接

    bootstrap通过引入bootstrap的JS与css文件,给元素添加class属性即可. 使用图标只需要加入一个span,class属性设置为对应的图标属性即可.图标对应的class属性可以参考 ...

  7. password passphrase passcode 的区别

    In general, passphrases are long passwords and passcodes are numeric-only passwords.

  8. 自定义ISO结构

    流程: 1.OS安装 1.1 网卡配置 1.2 密码 1.3 语言 1.4 时区 1.5 分区 1.6 rpms ... 2.软件安装 2.1 BIC Server 2.2 APP Server 2. ...

  9. 64_r1

    R-3.4.0-2.fc26.x86_64.rpm 15-May-2017 14:49 31030 R-ALL-1.6.0-4.fc26.noarch.rpm 17-Feb-2017 22:05 11 ...

  10. 191.Number of 1Bits---位运算---《剑指offer》10

    题目链接:https://leetcode.com/problems/number-of-1-bits/description/ 题目大意:与338题类似,求解某个无符号32位整数的二进制表示的1的个 ...