5010: [Fjoi2017]矩阵填数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 90  Solved: 45
[Submit][Status][Discuss]

Description

给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w。在这个矩阵中你需要在每
个格子中填入 1..m 中的某个数。给这个矩阵填数的时候有一些限制,给定 n 个该矩阵的子矩阵,以及该子矩阵的
最大值 v,要求你所填的方案满足该子矩阵的最大值为 v。现在,你的任务是求出有多少种填数的方案满足 n 个限
制。两种方案是不一样的当且仅当两个方案至少存在一个格子上有不同的数。由于答案可能很大,你只需要输出答
案 对 1,000,000,007 的取模即可。

Input

输入数据的第一行为一个数 T,表示数据组数。
对于每组数据,第一行为四个数 h,w,m,n。
接下来 n 行,每一行描述一个子矩阵的最大值 v。每行为五个整
数 x1,y1,x2,y2,v,表示一个左上角为(x1,y1),右下角为(x2,y2)的子矩阵的最大
值为 v ( 1≤x1≤x2≤h, 1≤y1≤y2≤w)
T≤5,1≤h,w,m≤10000,1≤v≤m,1≤n≤10

Output

对于每组数据输出一行,表示填数方案 mod 1,000,000,007 后的值。

Sample Input

2
3 3 2 2
1 1 2 2 2
2 2 3 3 1
4 4 4 4
1 1 2 3 3
2 3 4 4 2
2 1 4 3 2
1 2 3 4 4

Sample Output

28
76475

HINT

Source

容斥原理

先离散化,对于每一块,可以通过限制得出这一块最大值是多少。

答案=每个条件的子矩形最大值都小于等于这个条件的v - 有一个条件的子矩形最大值小于这个条件的v + 有两个条件的子矩形最大值小于这个条件的v - ...

我们可以O(2^n)枚举每个限制条件是否满足,然后可以根据表示这个状态的二进制数中1的个数确定这个状态的方案数贡献是正是负。

还有一个就是离散化的问题,用左闭右开。

代码用时:1h

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,md=;
int h,w,m,n,T,xx[N],yy[N],vv[N],mp[N][N],re[N][N],cnt[N],lx,ly,lv;
struct mat{ int x1,x2,y1,y2,v; }a[N];
int ksm(int a,int b){
int res;
for (res=; b; a=(1ll*a*a)%md,b>>=)
if (b & ) res=(1ll*res*a)%md;
return res;
} int main(){
freopen("bzoj5010.in","r",stdin);
freopen("bzoj5010.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d%d%d",&h,&w,&m,&n);
xx[]=; xx[lx=]=h; yy[]=; yy[ly=]=w; vv[lv=]=m;
rep(i,,n){
scanf("%d%d%d%d%d",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2,&a[i].v);
a[i].x1--; a[i].y1--;
xx[++lx]=a[i].x1; xx[++lx]=a[i].x2;
yy[++ly]=a[i].y1; yy[++ly]=a[i].y2;
vv[++lv]=a[i].v; vv[++lv]=a[i].v-;
}
sort(xx+,xx+lx+); sort(yy+,yy+ly+); sort(vv+,vv+lv+);
lx=unique(xx+,xx+lx+)-xx-; ly=unique(yy+,yy+ly+)-yy-; lv=unique(vv+,vv+lv+)-vv-;
rep(i,,lx) rep(j,,ly) re[i][j]=(xx[i]-xx[i-])*(yy[j]-yy[j-]);
rep(i,,n){
a[i].x1=lower_bound(xx+,xx+lx+,a[i].x1)-xx;
a[i].x2=lower_bound(xx+,xx+lx+,a[i].x2)-xx;
a[i].y1=lower_bound(yy+,yy+ly+,a[i].y1)-yy;
a[i].y2=lower_bound(yy+,yy+ly+,a[i].y2)-yy;
a[i].v=lower_bound(vv+,vv+lv+,a[i].v)-vv;
}
int ans=;
for (int s=; s<(<<n); s++){
rep(j,,lx) rep(k,,ly) mp[j][k]=lv;
int now=;
rep(i,,n){
int v=a[i].v;
if ((s>>(i-))&) now=-now,v--;
rep(j,a[i].x1+,a[i].x2) rep(k,a[i].y1+,a[i].y2) mp[j][k]=min(mp[j][k],v);
}
memset(cnt,,sizeof(cnt));
rep(i,,lx) rep(j,,ly) cnt[mp[i][j]]+=re[i][j];
rep(i,,lv) if (cnt[i]) now=1ll*now*ksm(vv[i],cnt[i])%md;
ans=(ans+now)%md;
}
printf("%d\n",(ans+md)%md);
}
return ;
}

[BZOJ5010][FJOI2017]矩阵填数(状压DP)的更多相关文章

  1. 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]

    矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...

  2. 一本通 1783 矩阵填数 状压dp 容斥 计数

    LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...

  3. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  4. BZOJ5010 FJOI2017矩阵填数(容斥原理)

    如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...

  5. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  6. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  7. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  8. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  9. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

随机推荐

  1. NYOJ 163 Phone List (字符串处理 字典树)

    题目链接 描述 Given a list of phone numbers, determine if it is consistent in the sense that no number is ...

  2. 分享6款国内、外开源PHP轻论坛CMS程序

    第一.Startbbs Startbbs,一款国产个人兴趣分享的轻论坛程序,采用PHP+MYSQL架构,目前版本是V1.1.5,之前我也 有搭建使用过功能还是比较简单的,默认风格比较让普通用户接受,这 ...

  3. Python3 断言

    #!/usr/bin/env python # _*_ coding:utf-8 _*_ # Author:CarsonLi ''' 断言一般用于后面有非常重要的操作,需要使用前面的数据,而且不容许出 ...

  4. 一个TCP报文段的数据部分最多为多少个字节,为什么

    IP数据报的最大长度=2^16-1=65535(字节)TCP报文段的数据部分=IP数据报的最大长度-IP数据报的首部-TCP报文段的首部=65535-20-20=65495(字节) 一个tcp报文段的 ...

  5. C++之C/C++内存对齐

    一.什么是字节对齐,为什么要对齐 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这 ...

  6. rabbitmq集群搭建方法简介(测试机linux centos)【转】

    本文将介绍四台机器搭建rabbitmq集群: rabbitmq IP和主机名(每台机器已安装RabbitMQ 3.5.6, Erlang 18.1) 192.168.87.73 localhost73 ...

  7. elk系列5之syslog的模块使用【转】

    preface rsyslog是CentOs系统自带的的一个日志工具,那么我们就配置logstash来接受rsyslog的日志. logstash的syslog模块 linux-node2上操作log ...

  8. Loadrunner下WebTours系统自带的用户名和密码

    打开:http://127.0.0.1:1080/WebTours/ 系统默认自带两个用户名和密码,位于~\WebTours\MercuryWebTours\users: 1.用户名:joe,密码:y ...

  9. rds 与mysql 进行主从同步

    .rds上默认会有server-****,只需要配置从数据库: .从数据库的配置流程: .[mysqld] log-bin = mysql-bin-changelog #要和主库中的名字一样 rela ...

  10. js完成密码输入为空,和两次输入不一致

    <!DOCTYPE html><html><body> <script language="javascript"> functio ...