[BZOJ5010][FJOI2017]矩阵填数(状压DP)
5010: [Fjoi2017]矩阵填数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 90 Solved: 45
[Submit][Status][Discuss]Description
给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w。在这个矩阵中你需要在每个格子中填入 1..m 中的某个数。给这个矩阵填数的时候有一些限制,给定 n 个该矩阵的子矩阵,以及该子矩阵的最大值 v,要求你所填的方案满足该子矩阵的最大值为 v。现在,你的任务是求出有多少种填数的方案满足 n 个限制。两种方案是不一样的当且仅当两个方案至少存在一个格子上有不同的数。由于答案可能很大,你只需要输出答案 对 1,000,000,007 的取模即可。Input
输入数据的第一行为一个数 T,表示数据组数。对于每组数据,第一行为四个数 h,w,m,n。接下来 n 行,每一行描述一个子矩阵的最大值 v。每行为五个整数 x1,y1,x2,y2,v,表示一个左上角为(x1,y1),右下角为(x2,y2)的子矩阵的最大值为 v ( 1≤x1≤x2≤h, 1≤y1≤y2≤w)T≤5,1≤h,w,m≤10000,1≤v≤m,1≤n≤10Output
对于每组数据输出一行,表示填数方案 mod 1,000,000,007 后的值。Sample Input
2
3 3 2 2
1 1 2 2 2
2 2 3 3 1
4 4 4 4
1 1 2 3 3
2 3 4 4 2
2 1 4 3 2
1 2 3 4 4Sample Output
28
76475HINT
Source
容斥原理
先离散化,对于每一块,可以通过限制得出这一块最大值是多少。
答案=每个条件的子矩形最大值都小于等于这个条件的v - 有一个条件的子矩形最大值小于这个条件的v + 有两个条件的子矩形最大值小于这个条件的v - ...
我们可以O(2^n)枚举每个限制条件是否满足,然后可以根据表示这个状态的二进制数中1的个数确定这个状态的方案数贡献是正是负。
还有一个就是离散化的问题,用左闭右开。
代码用时:1h
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,md=;
int h,w,m,n,T,xx[N],yy[N],vv[N],mp[N][N],re[N][N],cnt[N],lx,ly,lv;
struct mat{ int x1,x2,y1,y2,v; }a[N];
int ksm(int a,int b){
int res;
for (res=; b; a=(1ll*a*a)%md,b>>=)
if (b & ) res=(1ll*res*a)%md;
return res;
} int main(){
freopen("bzoj5010.in","r",stdin);
freopen("bzoj5010.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d%d%d",&h,&w,&m,&n);
xx[]=; xx[lx=]=h; yy[]=; yy[ly=]=w; vv[lv=]=m;
rep(i,,n){
scanf("%d%d%d%d%d",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2,&a[i].v);
a[i].x1--; a[i].y1--;
xx[++lx]=a[i].x1; xx[++lx]=a[i].x2;
yy[++ly]=a[i].y1; yy[++ly]=a[i].y2;
vv[++lv]=a[i].v; vv[++lv]=a[i].v-;
}
sort(xx+,xx+lx+); sort(yy+,yy+ly+); sort(vv+,vv+lv+);
lx=unique(xx+,xx+lx+)-xx-; ly=unique(yy+,yy+ly+)-yy-; lv=unique(vv+,vv+lv+)-vv-;
rep(i,,lx) rep(j,,ly) re[i][j]=(xx[i]-xx[i-])*(yy[j]-yy[j-]);
rep(i,,n){
a[i].x1=lower_bound(xx+,xx+lx+,a[i].x1)-xx;
a[i].x2=lower_bound(xx+,xx+lx+,a[i].x2)-xx;
a[i].y1=lower_bound(yy+,yy+ly+,a[i].y1)-yy;
a[i].y2=lower_bound(yy+,yy+ly+,a[i].y2)-yy;
a[i].v=lower_bound(vv+,vv+lv+,a[i].v)-vv;
}
int ans=;
for (int s=; s<(<<n); s++){
rep(j,,lx) rep(k,,ly) mp[j][k]=lv;
int now=;
rep(i,,n){
int v=a[i].v;
if ((s>>(i-))&) now=-now,v--;
rep(j,a[i].x1+,a[i].x2) rep(k,a[i].y1+,a[i].y2) mp[j][k]=min(mp[j][k],v);
}
memset(cnt,,sizeof(cnt));
rep(i,,lx) rep(j,,ly) cnt[mp[i][j]]+=re[i][j];
rep(i,,lv) if (cnt[i]) now=1ll*now*ksm(vv[i],cnt[i])%md;
ans=(ans+now)%md;
}
printf("%d\n",(ans+md)%md);
}
return ;
}
[BZOJ5010][FJOI2017]矩阵填数(状压DP)的更多相关文章
- 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]
矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...
- 一本通 1783 矩阵填数 状压dp 容斥 计数
LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...
- bzoj5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- BZOJ5010 FJOI2017矩阵填数(容斥原理)
如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...
- [FJOI2017]矩阵填数——容斥
参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...
- P3813 [FJOI2017]矩阵填数(组合数学)
P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
随机推荐
- 【CodeForces】908 E. New Year and Entity Enumeration
[题目]E. New Year and Entity Enumeration [题意]给定集合T包含n个m长二进制数,要求包含集合T且满足以下条件的集合S数:长度<=m,非和与的结果都在集合中. ...
- 用java代码调用shell脚本执行sqoop将hive表中数据导出到mysql
1:创建shell脚本 touch sqoop_options.sh chmod 777 sqoop_options.sh 编辑文件 特地将执行map的个数设置为变量 测试 可以java代码传参数 ...
- 漫谈JWT
一.JWT简介[对于了解JWT的童鞋,可以直接跳到最后] 咱们就不弄那些乱七八糟的概念,就简单点说一下JWT是什么.有什么和能干什么 1. JWT概念和作用 JWT全称为json web token, ...
- 【leetcode 简单】第三十二题 买卖股票的最佳时机Ⅱ
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...
- JS设计模式——3.封装与信息隐藏
封装.信息隐藏与接口的关系 信息隐藏是目的,封装是手段. 接口提供了一份记载着可供公共访问的方法的契约.它定义了两个对象间可以具有的关系.只要接口不变,这个关系的双方都是可以替换的. 一个理想的软件系 ...
- ruby post json
require 'net/http' require 'json' uri = URI('http://localhost/test1.php') req = Net::HTTP::Post.new ...
- python进阶之py文件内置属性
前言 对于任何一个python文件来说,当python解释器运行一个py文件,会自动将一些内容加载到内置的属性中:一个模块我们可以看做是一个比类更大的对象. 查看模块的内置属性 我们先创建一个典型的p ...
- STL hashtable阅读记录
unordered_map,unordered_set等相关内容总结: unordered_map和unordered_set是在开发过程中常见的stl数据结构.其本质是hashtable.在SGI_ ...
- 【BubbleCup X】D. Exploration plan
这个题首先一眼能看出二分答案…… 毕竟连可爱的边界都给你了. 下面就是怎么check 首先预处理跑一遍floyed,预处理出最短路. 用网络流判断能否达到即可. #include<bits/st ...
- Linux命令之ip命令
linux的ip命令和ifconfig类似,但前者功能更强大,并旨在取代后者.使用ip命令,只需一个命令,你就能很轻松地执行一些网络管理任务.ifconfig是net-tools中已被废弃使用的一个命 ...